Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-bender proteins may sway to DNA

06.12.2006
Among the many genes packed into each cell of our body, those that get turned on, or expressed, are the ones that make us who we are. Certain proteins do the job of regulating gene expression by clasping onto key spots of DNA -- the nucleic acid that contains the genetic instructions.

How does the protein recognize a particular binding site" Structural changes in both the protein and DNA, sometimes with the DNA within the complex kinked or sharply bent, allow for the specific contacts needed for a tight DNA-protein fit.

Scientists think DNA is largely passive in this genetic tango. But new findings by Anjum Ansari, associate professor of biophysics at the University of Illinois at Chicago, suggest DNA may not be the wallflower that many had assumed.

To follow in real time the structural changes that accompany protein-DNA binding, Ansari and her UIC colleagues used a test protein from bacteria and applied a laser pulse lasting about 10 billionths of a second to heat up and disturb the protein-DNA complex. They watched the dynamics of the bound DNA in response to this perturbation.

... more about:
»Ansari »DNA »Interaction »Protein-DNA

Ansari's group was the first to apply the laser temperature-jump technique to study the dynamics of a protein-DNA complex.

The studies were done in collaboration with Donald Crothers, Sterling Professor Emeritus of chemistry at Yale University, who examined the protein-DNA interaction with the more traditional stopped-flow technique.

"While stopped-flow technique can capture dynamics of biomolecules occurring on millisecond time-scales or longer, the goal of this study was to extend the time-resolution down to sub-microseconds. It gave us a new time window on probing protein-DNA interactions," Ansari said.

That broader time window, obtained in combination with the stopped-flow measurements, provided the first direct observation of DNA bending when bound to a DNA-bending protein.

"We found that the time-scales on which DNA was bending were very similar to previously reported time-scales on which individual base-pairs that hold the two DNA strands together were transiently breaking. That led us to conclude that the DNA is able to bend or kink on its own, at weak points created by the transient opening of base-pairs, and that the protein recognizes and binds tightly to the bent DNA conformation."

Conclusions by Ansari and her colleagues deviate slightly from the conventional dogma that it is the protein that bends the DNA. She said the results raise important questions about the role that the DNA "bendability" plays in guiding the correct bending protein to the appropriate site on the DNA.

Ansari said the research adds to the basic understanding of how proteins recognize a specific binding site.

"Gaining better insights into protein-DNA interactions that control all aspects of gene regulation may prove useful for rational design of drugs to target specific sites on the DNA, whereby one can ultimately develop better gene-based therapies," she said.

Paul Francuch | EurekAlert!
Further information:
http://www.earthlink.net
http://www.uic.edu/index.html/

Further reports about: Ansari DNA Interaction Protein-DNA

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>