Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-bender proteins may sway to DNA

06.12.2006
Among the many genes packed into each cell of our body, those that get turned on, or expressed, are the ones that make us who we are. Certain proteins do the job of regulating gene expression by clasping onto key spots of DNA -- the nucleic acid that contains the genetic instructions.

How does the protein recognize a particular binding site" Structural changes in both the protein and DNA, sometimes with the DNA within the complex kinked or sharply bent, allow for the specific contacts needed for a tight DNA-protein fit.

Scientists think DNA is largely passive in this genetic tango. But new findings by Anjum Ansari, associate professor of biophysics at the University of Illinois at Chicago, suggest DNA may not be the wallflower that many had assumed.

To follow in real time the structural changes that accompany protein-DNA binding, Ansari and her UIC colleagues used a test protein from bacteria and applied a laser pulse lasting about 10 billionths of a second to heat up and disturb the protein-DNA complex. They watched the dynamics of the bound DNA in response to this perturbation.

... more about:
»Ansari »DNA »Interaction »Protein-DNA

Ansari's group was the first to apply the laser temperature-jump technique to study the dynamics of a protein-DNA complex.

The studies were done in collaboration with Donald Crothers, Sterling Professor Emeritus of chemistry at Yale University, who examined the protein-DNA interaction with the more traditional stopped-flow technique.

"While stopped-flow technique can capture dynamics of biomolecules occurring on millisecond time-scales or longer, the goal of this study was to extend the time-resolution down to sub-microseconds. It gave us a new time window on probing protein-DNA interactions," Ansari said.

That broader time window, obtained in combination with the stopped-flow measurements, provided the first direct observation of DNA bending when bound to a DNA-bending protein.

"We found that the time-scales on which DNA was bending were very similar to previously reported time-scales on which individual base-pairs that hold the two DNA strands together were transiently breaking. That led us to conclude that the DNA is able to bend or kink on its own, at weak points created by the transient opening of base-pairs, and that the protein recognizes and binds tightly to the bent DNA conformation."

Conclusions by Ansari and her colleagues deviate slightly from the conventional dogma that it is the protein that bends the DNA. She said the results raise important questions about the role that the DNA "bendability" plays in guiding the correct bending protein to the appropriate site on the DNA.

Ansari said the research adds to the basic understanding of how proteins recognize a specific binding site.

"Gaining better insights into protein-DNA interactions that control all aspects of gene regulation may prove useful for rational design of drugs to target specific sites on the DNA, whereby one can ultimately develop better gene-based therapies," she said.

Paul Francuch | EurekAlert!
Further information:
http://www.earthlink.net
http://www.uic.edu/index.html/

Further reports about: Ansari DNA Interaction Protein-DNA

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>