Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'marker' on stem cells aids research, perhaps therapies

05.12.2006
A sugar molecule present on embryonic stem cells also has been found on the surface of a type of adult stem cell, a discovery that may help researchers isolate and purify adult stem cells for use in therapies aimed at bone healing, tendon repair and cartilage regeneration, researchers at UT Southwestern Medical Center report.

The molecule, called SSEA-4, was found on the surface of certain stem cells in bone marrow that give rise to fat, cartilage and bone. These so-called mesenchymal cells are a tiny component of bone marrow; the vast majority of bone marrow is made up of hematopoietic stem cells, which give rise to blood and immune cells.

Dr. Rita Perlingeiro, assistant professor in the Center for Developmental Biology and of molecular biology, said detecting SSEA-4 will aid in singling out the mesenchymal stem cells, or MSCs, for more detailed scientific study as well as for possible medical applications. The cells have shown promise in early clinical studies elsewhere, where scientists tested their use to repair bone defects and to attenuate the effects of bone loss in diseases such as osteoporosis.

The study is available online and will be published in the Feb. 15 issue of the journal Blood.

Although mesenchymal cells were discovered in the 1970s, researchers still use decades-old methods to isolate them from bone marrow, said Dr. Perlingeiro, who led the research.

Exploiting the sugar molecule as a biological marker will boost researchers’ ability to obtain a purer, more homogeneous population of MSCs. That’s an important consideration, for example, in applications such as tissue engineering, where only bone-generating cells are needed. Such cells are being tested by a number of researchers for their ability to grow fat, cartilage and bone on special biomaterial-based scaffolding, with the goal of producing soft tissue for reconstruction or augmentation, or to shore up bones left fragile by age or disease.

“With a purer cell population, you should have a more effective therapy,” Dr. Perlingeiro said.

The SSEA-4 molecule was known to be on the surface of embryonic stem cells, as well as on embryonic carcinoma cells, the malignant counterparts of embryonic stem cells.

Dr. Perlingeiro’s ongoing studies also suggest that the SSEA-4 molecule might be present in other tissues, leading to the intriguing possibility that the SSEA-4 molecule could be a marker for “stemness,” she said.

“The discovery of this molecule on MSCs was surprising, and is important to further our understanding of the biological nature of adult stem cells,” Dr. Perlingeiro said. “We are also interested in learning whether SSEA-4 is expressed on other stem cells, such as those for muscle.

“It could actually be useful where we see less of it, as in tissues with very few stem cells. This marker could help us separate out those rare cells more easily.”

She and her team also are investigating the SSEA-4 molecule’s relationship to cancer stem cells, those cells in a tumor that behave like stem cells in that they self-renew and maintain the cancer even if most of the tumor is destroyed by radiation or chemotherapy.

“Is the expression of this marker elevated in a tumor" If so, perhaps it might be useful to identify cancer stem cells, but we don’t know yet,” Dr. Perlingeiro said. “That would be a very beneficial application, not just for guiding therapy, but also for early cancer detection and perhaps prevention.”

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Embryonic Perlingeiro SSEA-4 embryonic stem cell stem cells

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>