Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'marker' on stem cells aids research, perhaps therapies

05.12.2006
A sugar molecule present on embryonic stem cells also has been found on the surface of a type of adult stem cell, a discovery that may help researchers isolate and purify adult stem cells for use in therapies aimed at bone healing, tendon repair and cartilage regeneration, researchers at UT Southwestern Medical Center report.

The molecule, called SSEA-4, was found on the surface of certain stem cells in bone marrow that give rise to fat, cartilage and bone. These so-called mesenchymal cells are a tiny component of bone marrow; the vast majority of bone marrow is made up of hematopoietic stem cells, which give rise to blood and immune cells.

Dr. Rita Perlingeiro, assistant professor in the Center for Developmental Biology and of molecular biology, said detecting SSEA-4 will aid in singling out the mesenchymal stem cells, or MSCs, for more detailed scientific study as well as for possible medical applications. The cells have shown promise in early clinical studies elsewhere, where scientists tested their use to repair bone defects and to attenuate the effects of bone loss in diseases such as osteoporosis.

The study is available online and will be published in the Feb. 15 issue of the journal Blood.

Although mesenchymal cells were discovered in the 1970s, researchers still use decades-old methods to isolate them from bone marrow, said Dr. Perlingeiro, who led the research.

Exploiting the sugar molecule as a biological marker will boost researchers’ ability to obtain a purer, more homogeneous population of MSCs. That’s an important consideration, for example, in applications such as tissue engineering, where only bone-generating cells are needed. Such cells are being tested by a number of researchers for their ability to grow fat, cartilage and bone on special biomaterial-based scaffolding, with the goal of producing soft tissue for reconstruction or augmentation, or to shore up bones left fragile by age or disease.

“With a purer cell population, you should have a more effective therapy,” Dr. Perlingeiro said.

The SSEA-4 molecule was known to be on the surface of embryonic stem cells, as well as on embryonic carcinoma cells, the malignant counterparts of embryonic stem cells.

Dr. Perlingeiro’s ongoing studies also suggest that the SSEA-4 molecule might be present in other tissues, leading to the intriguing possibility that the SSEA-4 molecule could be a marker for “stemness,” she said.

“The discovery of this molecule on MSCs was surprising, and is important to further our understanding of the biological nature of adult stem cells,” Dr. Perlingeiro said. “We are also interested in learning whether SSEA-4 is expressed on other stem cells, such as those for muscle.

“It could actually be useful where we see less of it, as in tissues with very few stem cells. This marker could help us separate out those rare cells more easily.”

She and her team also are investigating the SSEA-4 molecule’s relationship to cancer stem cells, those cells in a tumor that behave like stem cells in that they self-renew and maintain the cancer even if most of the tumor is destroyed by radiation or chemotherapy.

“Is the expression of this marker elevated in a tumor" If so, perhaps it might be useful to identify cancer stem cells, but we don’t know yet,” Dr. Perlingeiro said. “That would be a very beneficial application, not just for guiding therapy, but also for early cancer detection and perhaps prevention.”

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Embryonic Perlingeiro SSEA-4 embryonic stem cell stem cells

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>