Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'marker' on stem cells aids research, perhaps therapies

05.12.2006
A sugar molecule present on embryonic stem cells also has been found on the surface of a type of adult stem cell, a discovery that may help researchers isolate and purify adult stem cells for use in therapies aimed at bone healing, tendon repair and cartilage regeneration, researchers at UT Southwestern Medical Center report.

The molecule, called SSEA-4, was found on the surface of certain stem cells in bone marrow that give rise to fat, cartilage and bone. These so-called mesenchymal cells are a tiny component of bone marrow; the vast majority of bone marrow is made up of hematopoietic stem cells, which give rise to blood and immune cells.

Dr. Rita Perlingeiro, assistant professor in the Center for Developmental Biology and of molecular biology, said detecting SSEA-4 will aid in singling out the mesenchymal stem cells, or MSCs, for more detailed scientific study as well as for possible medical applications. The cells have shown promise in early clinical studies elsewhere, where scientists tested their use to repair bone defects and to attenuate the effects of bone loss in diseases such as osteoporosis.

The study is available online and will be published in the Feb. 15 issue of the journal Blood.

Although mesenchymal cells were discovered in the 1970s, researchers still use decades-old methods to isolate them from bone marrow, said Dr. Perlingeiro, who led the research.

Exploiting the sugar molecule as a biological marker will boost researchers’ ability to obtain a purer, more homogeneous population of MSCs. That’s an important consideration, for example, in applications such as tissue engineering, where only bone-generating cells are needed. Such cells are being tested by a number of researchers for their ability to grow fat, cartilage and bone on special biomaterial-based scaffolding, with the goal of producing soft tissue for reconstruction or augmentation, or to shore up bones left fragile by age or disease.

“With a purer cell population, you should have a more effective therapy,” Dr. Perlingeiro said.

The SSEA-4 molecule was known to be on the surface of embryonic stem cells, as well as on embryonic carcinoma cells, the malignant counterparts of embryonic stem cells.

Dr. Perlingeiro’s ongoing studies also suggest that the SSEA-4 molecule might be present in other tissues, leading to the intriguing possibility that the SSEA-4 molecule could be a marker for “stemness,” she said.

“The discovery of this molecule on MSCs was surprising, and is important to further our understanding of the biological nature of adult stem cells,” Dr. Perlingeiro said. “We are also interested in learning whether SSEA-4 is expressed on other stem cells, such as those for muscle.

“It could actually be useful where we see less of it, as in tissues with very few stem cells. This marker could help us separate out those rare cells more easily.”

She and her team also are investigating the SSEA-4 molecule’s relationship to cancer stem cells, those cells in a tumor that behave like stem cells in that they self-renew and maintain the cancer even if most of the tumor is destroyed by radiation or chemotherapy.

“Is the expression of this marker elevated in a tumor" If so, perhaps it might be useful to identify cancer stem cells, but we don’t know yet,” Dr. Perlingeiro said. “That would be a very beneficial application, not just for guiding therapy, but also for early cancer detection and perhaps prevention.”

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Embryonic Perlingeiro SSEA-4 embryonic stem cell stem cells

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>