Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemotherapy temporarily affects the structures of the human brain

28.11.2006
Researchers have linked chemotherapy with short-term structural changes in cognitive areas of the brain, according to a new study.

Published in the January 1, 2007 issue of CANCER (http://www.interscience.wiley.com/cancer-newsroom), a peer-reviewed journal of the American Cancer Society, the study reveals that within 12 months of receiving adjuvant chemotherapy, significant regions of the brain associated with memory, analysis and other cognitive functions were significantly smaller in breast cancer patients who received chemotherapy than those who did not. Within four years after treatment, however, there were no differences in these same regions of the brain.

While the development of chemotherapy has had substantial and beneficial impact on cancer survival rates, it is also linked to significant short- and long-term adverse effects. Gastrointestinal complaints, immunosuppression, and painful mucositis, for example, are the immediate risks of the treatment.

Patients receiving chemotherapy have also long complained of problems with memory, problem-solving and other cognitive abilities. Although chemotherapy was thought not to affect brain cells due to the blood-brain barrier, recent clinical studies have confirmed declines in cognitive functions in patients receiving chemotherapy. Animal studies have shown physical changes in the brain and in neurons caused by chemotherapy drugs. In human studies, however, the little data that is available is only available through imaging and is not consistent in the long-term. In addition, lack of controls in studies makes it difficult discern cancer- versus drug-effects.

Led by Masatoshi Inagaki, M.D., Ph.D., of the Breast Cancer Survivors' Brain MRI Database Group in Japan, researchers used MRI to take high-resolution images and measure volumes in specific areas of the brain of breast cancer patients who received chemotherapy and those who did not one-year after surgery and three-years after surgery. In addition, they compared brains of cancer survivors one-year after surgery and three-years after surgery with healthy subjects.

They found that at one-year, patients treated with chemotherapy had smaller volumes in cognitively sensitive areas, such as the prefrontal, parahippocampal and cingulate gyri, and precuneus regions. However, at three-years post-surgery there was no volume differences. That there were no differences between cancer patients and healthy controls at any time point demonstrates that there is no observable cancer-effect in cognitive deficits.

The authors write that this study suggests that regional brain changes are observable within 12 months and correlate with receiving chemotherapy rather than a secondary effect of the cancer, although it cannot be concluded because of several limitations caused by the study design. However, these structural changes to the central nervous system were not sustained for patients three years after chemotherapy. The authors conclude that "these results lead to the idea that adjuvant chemotherapy could have a temporary effect on brain structure."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/cancer-newsroom

Further reports about: chemotherapy cognitive cognitive function patients receiving

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>