Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemotherapy temporarily affects the structures of the human brain

28.11.2006
Researchers have linked chemotherapy with short-term structural changes in cognitive areas of the brain, according to a new study.

Published in the January 1, 2007 issue of CANCER (http://www.interscience.wiley.com/cancer-newsroom), a peer-reviewed journal of the American Cancer Society, the study reveals that within 12 months of receiving adjuvant chemotherapy, significant regions of the brain associated with memory, analysis and other cognitive functions were significantly smaller in breast cancer patients who received chemotherapy than those who did not. Within four years after treatment, however, there were no differences in these same regions of the brain.

While the development of chemotherapy has had substantial and beneficial impact on cancer survival rates, it is also linked to significant short- and long-term adverse effects. Gastrointestinal complaints, immunosuppression, and painful mucositis, for example, are the immediate risks of the treatment.

Patients receiving chemotherapy have also long complained of problems with memory, problem-solving and other cognitive abilities. Although chemotherapy was thought not to affect brain cells due to the blood-brain barrier, recent clinical studies have confirmed declines in cognitive functions in patients receiving chemotherapy. Animal studies have shown physical changes in the brain and in neurons caused by chemotherapy drugs. In human studies, however, the little data that is available is only available through imaging and is not consistent in the long-term. In addition, lack of controls in studies makes it difficult discern cancer- versus drug-effects.

Led by Masatoshi Inagaki, M.D., Ph.D., of the Breast Cancer Survivors' Brain MRI Database Group in Japan, researchers used MRI to take high-resolution images and measure volumes in specific areas of the brain of breast cancer patients who received chemotherapy and those who did not one-year after surgery and three-years after surgery. In addition, they compared brains of cancer survivors one-year after surgery and three-years after surgery with healthy subjects.

They found that at one-year, patients treated with chemotherapy had smaller volumes in cognitively sensitive areas, such as the prefrontal, parahippocampal and cingulate gyri, and precuneus regions. However, at three-years post-surgery there was no volume differences. That there were no differences between cancer patients and healthy controls at any time point demonstrates that there is no observable cancer-effect in cognitive deficits.

The authors write that this study suggests that regional brain changes are observable within 12 months and correlate with receiving chemotherapy rather than a secondary effect of the cancer, although it cannot be concluded because of several limitations caused by the study design. However, these structural changes to the central nervous system were not sustained for patients three years after chemotherapy. The authors conclude that "these results lead to the idea that adjuvant chemotherapy could have a temporary effect on brain structure."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/cancer-newsroom

Further reports about: chemotherapy cognitive cognitive function patients receiving

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>