Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemotherapy temporarily affects the structures of the human brain

28.11.2006
Researchers have linked chemotherapy with short-term structural changes in cognitive areas of the brain, according to a new study.

Published in the January 1, 2007 issue of CANCER (http://www.interscience.wiley.com/cancer-newsroom), a peer-reviewed journal of the American Cancer Society, the study reveals that within 12 months of receiving adjuvant chemotherapy, significant regions of the brain associated with memory, analysis and other cognitive functions were significantly smaller in breast cancer patients who received chemotherapy than those who did not. Within four years after treatment, however, there were no differences in these same regions of the brain.

While the development of chemotherapy has had substantial and beneficial impact on cancer survival rates, it is also linked to significant short- and long-term adverse effects. Gastrointestinal complaints, immunosuppression, and painful mucositis, for example, are the immediate risks of the treatment.

Patients receiving chemotherapy have also long complained of problems with memory, problem-solving and other cognitive abilities. Although chemotherapy was thought not to affect brain cells due to the blood-brain barrier, recent clinical studies have confirmed declines in cognitive functions in patients receiving chemotherapy. Animal studies have shown physical changes in the brain and in neurons caused by chemotherapy drugs. In human studies, however, the little data that is available is only available through imaging and is not consistent in the long-term. In addition, lack of controls in studies makes it difficult discern cancer- versus drug-effects.

Led by Masatoshi Inagaki, M.D., Ph.D., of the Breast Cancer Survivors' Brain MRI Database Group in Japan, researchers used MRI to take high-resolution images and measure volumes in specific areas of the brain of breast cancer patients who received chemotherapy and those who did not one-year after surgery and three-years after surgery. In addition, they compared brains of cancer survivors one-year after surgery and three-years after surgery with healthy subjects.

They found that at one-year, patients treated with chemotherapy had smaller volumes in cognitively sensitive areas, such as the prefrontal, parahippocampal and cingulate gyri, and precuneus regions. However, at three-years post-surgery there was no volume differences. That there were no differences between cancer patients and healthy controls at any time point demonstrates that there is no observable cancer-effect in cognitive deficits.

The authors write that this study suggests that regional brain changes are observable within 12 months and correlate with receiving chemotherapy rather than a secondary effect of the cancer, although it cannot be concluded because of several limitations caused by the study design. However, these structural changes to the central nervous system were not sustained for patients three years after chemotherapy. The authors conclude that "these results lead to the idea that adjuvant chemotherapy could have a temporary effect on brain structure."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/cancer-newsroom

Further reports about: chemotherapy cognitive cognitive function patients receiving

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>