Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Math model may aid study of collagen ailments

16.11.2006
Tensile loading reveals nature's economy

An MIT researcher's mathematical model explains for the first time the distinctive structure of collagen, a material key to healthy human bone, muscles and other tissues. The new model shows collagen's structure from the atomic to the tissue scale.

An improved understanding of nature's most abundant protein could aid the search for cures to such ailments as osteoporosis, joint hyperextensibility and scurvy, all recognized as arising from diseased collagen. It could also guide engineers' development of synthetic versions of the protein, which in its healthy state is several times stronger than steel per molecule.

Biological experiments in the past have shown that collagen's universal design consists of molecules staggered lengthwise, arranged like fibers in a steel cable. Each tiny tropocollagen molecule--the smallest collagen building block--is around 300 nanometers long and only 1.5 nanometers thick. (A nanometer is one-billionth of a meter.) But why these ropy strands of amino acids--the molecular building blocks of proteins--associate to form tropocollagen molecules consistently at the same length has been unexplained until now.

The molecular model of collagen developed by Markus Buehler, an assistant professor in the Department of Civil and Environmental Engineering, started on the atomic scale. Buehler then combined elements of quantum mechanics and molecular dynamics to scale his model up and show precisely which length and arrangement of molecules were best for sustaining large weights pulling in opposite directions, a process known as tensile loading.

Buehler discovered that the ideal length of tropocollagen molecules was indeed close to 300 nanometers. His work has shown that the characteristic nanopatterned structure of collagen is responsible for its high extensibility and strength. "This is the first time a predictive, molecular model was used to explain the design features that experiments have shown for decades without understanding the rationale behind them," he explained.

"The response of materials to tensile loading has been studied in materials science for computer chips, cars and buildings, but is still poorly understood for biological materials. What we are doing is looking at biological systems on a molecular level, the same way we would examine glass or metal," said Buehler. "This represents a new way of thinking about biological matter, and it may hold the key to engineering biological systems as we design man-made devices today."

The next step in the research will be to delve deeper into the structure of collagen. "We've developed a reference point for healthy collagen. This enables us now to study how diseases or genetic mutations impact the structure," said Buehler. Learning more about the structural differences between diseased and healthy collagen could help in the development of biomimetic materials.

Buehler is optimistic about the future. "Understanding the mechanical properties of protein materials--in particular their deformation and fracture--is a frontier in materials science. We're trying to figure out how nature creates better materials than we can," he said.

The current work, which appeared in a recent issue of the Proceedings of the National Academy of Sciences, was funded by startup grants Buehler received from MIT's Department of Civil and Environmental Engineering and MIT's School of Engineering.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: Buehler Collagen Model Nanometer biological system healthy

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>