Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Math model may aid study of collagen ailments

16.11.2006
Tensile loading reveals nature's economy

An MIT researcher's mathematical model explains for the first time the distinctive structure of collagen, a material key to healthy human bone, muscles and other tissues. The new model shows collagen's structure from the atomic to the tissue scale.

An improved understanding of nature's most abundant protein could aid the search for cures to such ailments as osteoporosis, joint hyperextensibility and scurvy, all recognized as arising from diseased collagen. It could also guide engineers' development of synthetic versions of the protein, which in its healthy state is several times stronger than steel per molecule.

Biological experiments in the past have shown that collagen's universal design consists of molecules staggered lengthwise, arranged like fibers in a steel cable. Each tiny tropocollagen molecule--the smallest collagen building block--is around 300 nanometers long and only 1.5 nanometers thick. (A nanometer is one-billionth of a meter.) But why these ropy strands of amino acids--the molecular building blocks of proteins--associate to form tropocollagen molecules consistently at the same length has been unexplained until now.

The molecular model of collagen developed by Markus Buehler, an assistant professor in the Department of Civil and Environmental Engineering, started on the atomic scale. Buehler then combined elements of quantum mechanics and molecular dynamics to scale his model up and show precisely which length and arrangement of molecules were best for sustaining large weights pulling in opposite directions, a process known as tensile loading.

Buehler discovered that the ideal length of tropocollagen molecules was indeed close to 300 nanometers. His work has shown that the characteristic nanopatterned structure of collagen is responsible for its high extensibility and strength. "This is the first time a predictive, molecular model was used to explain the design features that experiments have shown for decades without understanding the rationale behind them," he explained.

"The response of materials to tensile loading has been studied in materials science for computer chips, cars and buildings, but is still poorly understood for biological materials. What we are doing is looking at biological systems on a molecular level, the same way we would examine glass or metal," said Buehler. "This represents a new way of thinking about biological matter, and it may hold the key to engineering biological systems as we design man-made devices today."

The next step in the research will be to delve deeper into the structure of collagen. "We've developed a reference point for healthy collagen. This enables us now to study how diseases or genetic mutations impact the structure," said Buehler. Learning more about the structural differences between diseased and healthy collagen could help in the development of biomimetic materials.

Buehler is optimistic about the future. "Understanding the mechanical properties of protein materials--in particular their deformation and fracture--is a frontier in materials science. We're trying to figure out how nature creates better materials than we can," he said.

The current work, which appeared in a recent issue of the Proceedings of the National Academy of Sciences, was funded by startup grants Buehler received from MIT's Department of Civil and Environmental Engineering and MIT's School of Engineering.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: Buehler Collagen Model Nanometer biological system healthy

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>