Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking 'chips' to the next level of gene hunting

15.11.2006
Researchers at the Johns Hopkins' High Throughput Biology Center have invented two new gene "chip" technologies that can be used to help identify otherwise elusive disease-causing mutations in the 97 percent of the genome long believed to be "junk."

A variety of DNA microarray technology, one of the two new chips, called the TIP-chip (transposable element insertion point) can locate in the genome where so-called jumping genes have landed and disrupted normal gene function. This chip is described online this week in the Proceedings of the National Academy of Sciences.

The most commonly used gene chips are glass slides that have arrayed on them neat grids of tiny dots containing small sequences of only hand-selected non-junk DNA. TIP-chips contain on them all DNA sequences. Because each chip can hold thousands of these dots - even a whole genome's worth of information - scientists in the future may be able to rapidly and efficiently identify, by comparing a DNA sample from a patient with the DNA on the chip, exactly where mutations lie.

"With standard chips, we're missing a big piece of the picture of mutations in humans because they look only at the meaty parts of genes, but the human genome is only 3 percent meaty parts," says Jef Boeke, Ph.D., Sc.D, professor of molecular biology and genetics and director of the HiT (High Throughput Biology Center), who spearheaded both studies at the Institute of Basic Biomedical Sciences at Hopkins. "The other 97 percent also can contain disease-causing mutations and is often systematically ignored," he says.

... more about:
»Boeke »Chromosome »DNA »TIP-chip »Transposable »mutations

Boeke and his team have focused particularly on transposable elements, segments of DNA that hop around from chromosome to chromosome. These elements can, depending on where they land, wrongly turn on or off nearby genes, interrupt a gene by lodging in the middle of it, or cause chromosomes to break. Transposable elements long have been suspected of playing a role vital to disease-causing mutations in people. Boeke hopes that the TIP-chip eventually can be used to look for such mutations in people.

The new TIP-chip contains evenly sized fragments of the yeast genome arrayed in dots left to right in the same order as they appear on the chromosome. Boeke's team used the one-celled yeast genome as starting material because, unlike the human genome, which contains hundreds of thousands of transposable elements of which perhaps a few hundred are actively moving around, the yeast genome contains only a few dozen copies.

Like a word-find puzzle, where words are hidden in a jumbled grid of letters, the TIP-chip highlights exactly where along the DNA sequence these elements have landed. By chopping up the DNA, amplifying the DNA next to the transposable elements and then applying these amplified copies to the TIP chip, the researchers were able to map more than 94 percent of the transposable elements to their exact chromosome locations.

The second new chip, described in a separate report published in the Nov. 3 issue of Nature Methods, contains twice the amount of genetic information of current DNA chips.

"This one lets us look at twice as much as we could in the past, which means essentially that all chip experiments become faster and cheaper and can be done on an ever larger scale," says Boeke. The chips his team currently uses cost about $400 per experiment. If the amount of information can be quadrupled, "it would be four experiments for the price of one," he says.

Standard chips contain one layer of DNA dots that read from left to right, like the across section of a crossword puzzle. Boeke's new double-capacity chips hold two layers of dots, a bottom layer that reads across and a top layer that reads down, again using the crossword analogy. So if their experiment lights up a horizontal row of dots, the researchers learn that the data maps to the region of the genome contained in the bottom layer; likewise, if the experiment highlights a vertical row, the data correspond to the top layer.

Says Boeke, "It's so easy to differentiate the top and bottom layers. Next we're going to try adding another layer reading diagonally" to triple the amount of genomic information packed onto the tiny chips.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Boeke Chromosome DNA TIP-chip Transposable mutations

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>