Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test may identify cardiovascular disease earlier

15.11.2006
By analyzing the "trash" left in blood by the body's metabolism, a team of cardiologists and geneticists at Duke University Medical Center has found what may be new markers for measuring cardiovascular health, to complement such traditional measures as cholesterol and triglycerides.

The markers also may prove useful as "early warning systems" for coronary artery disease, alerting physicians to patients who need preventive treatment to keep their disease from progressing to danger levels, according to the researchers.

The analysis is one of the first to use metabolomics -- that is, the systematic study of the unique chemical fingerprints that specific cellular processes leave behind -- to better understand the underlying biological pathways involved in families with coronary artery disease, the researchers said. They likened metabolomics to analyzing the contents of a trash can in order to learn about the people who filled the can.

The team measured minute amounts of metabolites, or byproducts of cellular metabolism, in the blood of people whose extended family members had a history of developing coronary artery disease at an early age. Using the measurements, the researchers generated "metabolite profiles" of each individual.

Based on these profiles, the researchers demonstrated that many of the metabolites have stronger heritabilities, a measure of genetic predisposition, than do conventional markers such as cholesterol. This finding suggests that it may be possible to identify people at an early age who would be most likely to develop coronary artery disease, the researchers said.

"The results of our studies may have significant clinical implications above and beyond the ability of identifying the genes that underlie the susceptibility to coronary artery disease," said cardiologist and study team leader Svati Shah, M.D., who reported the findings on Tuesday, Nov. 14, at the annual scientific sessions of the American Heart Association, in Chicago.

"The data from our study suggest that there is a strong genetic component to an individual's metabolomic profile," Shah said. "Furthermore, they suggest that changes in the metabolic profiles in the offspring of patients with coronary artery disease precede development of the disease. With this advance notice, we could then start strategies, such as drugs or lifestyle changes, to stop or slow down the disease process."

The study was supported by the National Institutes of Health and the American Heart Association.

The researchers studied 82 patients from five extended families with at least two siblings afflicted with coronary artery disease at an early age -- that is, at age 51 or younger for men and 56 or younger for women. The team chose to focus on families with histories of early cardiovascular because it is most likely that patients who have coronary artery disease at a young age have inherited it, rather than developed it over years.

The researchers took blood samples from all family members and performed detailed screening for more than 60 metabolites. According to Shah, the metabolites they were searching for are physically tiny and occur in small numbers. She said a colleague, Christopher Newgard, Ph.D., developed the technology necessary to make these exacting and detailed measurements.

The team found that certain metabolites were significantly different in the five families, and paralleled differences in the clinical characteristics of the families. The presence of the suspect metabolites may serve as an indicator that the body is not properly using certain fuel sources, and may represent a marker for cardiovascular risk, Shah said.

"We found clear evidence for a strong genetic component to metabolites in families heavily burdened with cardiovascular risk factors," Shah said. "Some of the metabolites we identified can aggravate the body's inflammatory response as well as insulin signaling in diseased arteries." Both such actions, she said, may play a role in cardiovascular disease.

Shah's group plans further studies to identify the genes responsible for the metabolomic profiles uncovered in the current study. She also plans to study the metabolite screening process in a much larger group of patients without family histories of cardiovascular disease to see if there are any similarities to the early-onset cardiovascular disease.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>