Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test may identify cardiovascular disease earlier

15.11.2006
By analyzing the "trash" left in blood by the body's metabolism, a team of cardiologists and geneticists at Duke University Medical Center has found what may be new markers for measuring cardiovascular health, to complement such traditional measures as cholesterol and triglycerides.

The markers also may prove useful as "early warning systems" for coronary artery disease, alerting physicians to patients who need preventive treatment to keep their disease from progressing to danger levels, according to the researchers.

The analysis is one of the first to use metabolomics -- that is, the systematic study of the unique chemical fingerprints that specific cellular processes leave behind -- to better understand the underlying biological pathways involved in families with coronary artery disease, the researchers said. They likened metabolomics to analyzing the contents of a trash can in order to learn about the people who filled the can.

The team measured minute amounts of metabolites, or byproducts of cellular metabolism, in the blood of people whose extended family members had a history of developing coronary artery disease at an early age. Using the measurements, the researchers generated "metabolite profiles" of each individual.

Based on these profiles, the researchers demonstrated that many of the metabolites have stronger heritabilities, a measure of genetic predisposition, than do conventional markers such as cholesterol. This finding suggests that it may be possible to identify people at an early age who would be most likely to develop coronary artery disease, the researchers said.

"The results of our studies may have significant clinical implications above and beyond the ability of identifying the genes that underlie the susceptibility to coronary artery disease," said cardiologist and study team leader Svati Shah, M.D., who reported the findings on Tuesday, Nov. 14, at the annual scientific sessions of the American Heart Association, in Chicago.

"The data from our study suggest that there is a strong genetic component to an individual's metabolomic profile," Shah said. "Furthermore, they suggest that changes in the metabolic profiles in the offspring of patients with coronary artery disease precede development of the disease. With this advance notice, we could then start strategies, such as drugs or lifestyle changes, to stop or slow down the disease process."

The study was supported by the National Institutes of Health and the American Heart Association.

The researchers studied 82 patients from five extended families with at least two siblings afflicted with coronary artery disease at an early age -- that is, at age 51 or younger for men and 56 or younger for women. The team chose to focus on families with histories of early cardiovascular because it is most likely that patients who have coronary artery disease at a young age have inherited it, rather than developed it over years.

The researchers took blood samples from all family members and performed detailed screening for more than 60 metabolites. According to Shah, the metabolites they were searching for are physically tiny and occur in small numbers. She said a colleague, Christopher Newgard, Ph.D., developed the technology necessary to make these exacting and detailed measurements.

The team found that certain metabolites were significantly different in the five families, and paralleled differences in the clinical characteristics of the families. The presence of the suspect metabolites may serve as an indicator that the body is not properly using certain fuel sources, and may represent a marker for cardiovascular risk, Shah said.

"We found clear evidence for a strong genetic component to metabolites in families heavily burdened with cardiovascular risk factors," Shah said. "Some of the metabolites we identified can aggravate the body's inflammatory response as well as insulin signaling in diseased arteries." Both such actions, she said, may play a role in cardiovascular disease.

Shah's group plans further studies to identify the genes responsible for the metabolomic profiles uncovered in the current study. She also plans to study the metabolite screening process in a much larger group of patients without family histories of cardiovascular disease to see if there are any similarities to the early-onset cardiovascular disease.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>