Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers discover how brain protein might control memory

13.11.2006
Researchers at Johns Hopkins have figured out how one particular protein contributes to long-term memory and helps the brain remember things longer than an hour or two. The findings are reported in two papers in the Nov. 9 issue of Neuron.

The protein, called Arc, has been implicated in memory-linked behaviors ranging from song learning in birds to rodents being aware of 3-D space. In people, Arc may be one culprit behind certain long-term memory-based behaviors like drug addiction, the researchers say.

"We think Arc controls how brain cells learn and associate behaviors and remember them over a long period of time," says Paul F. Worley, M.D., professor of neuroscience and neurology at Hopkins and director of both studies. "For example, the person who quits smoking can wean himself from cravings at home, at work or outside. But if you put him in a bar with a drink in his hand, his brain remembers that former association and suddenly the craving returns. These types of long-term associations are memories wired in your brain."

Years ago, Worley and his colleagues, studying laboratory rats, found that their brains made lots of Arc protein while the animals were awake and active. In fact, it has been long known that stimulating individual nerve cells - by an act as simple as exploring new environs, for example - causes the cells to make more Arc protein almost immediately. "Arc is an instant and reliable readout for active cells in the brain," says Worley. But although scientists knew that active cells were making copious amounts of Arc, no one knew exactly what Arc was doing in those cells until now.

To figure out what Arc was doing, the Hopkins team looked for what other proteins Arc "plays" with. Using Arc protein as bait, they went on a molecular fishing expedition in a pond filled with other proteins normally found in the brain and hooked two known to be involved in transporting materials into and out of cells.

"Moving things in and out of cells is critical for normal brain cell function. We were extremely excited that Arc might somehow be involved in this transport because it links transport to memory formation," says Worley. "This brings us one step closer to understanding how the brain saves memories."

According to Worley, memories form when nerve cells connect and "talk" to other nerve cells. It's thought that the stronger these connections are, the stronger the memory.

Like the childhood game called Telephone, where one person taps her neighbor and whispers a message that is passed on in similar fashion to the next person in line, nerve cells connect and "talk" to each other by relaying messages - usually by passing small chemicals - from cell to cell.

When nerve cells connect with each other in the brain, one cell releases chemicals into the space between it and its neighbor. The neighboring cell has protein receptors on its surface that capture the released chemicals. The cell that captures these chemicals then swallows up the receptor-chemical complexes, removing the receptors from the cell's surface. The more receptors present, according to Worley, the stronger the connection between the two cells. New receptors constantly replace the swallowed-up ones.

The two proteins that came out of the Arc fishing expedition - known as dynamin and endophilin - previously were known to be critical for this swallowing action. And, it turns out that Arc controls these two proteins and therefore controls how often cells swallow receptors from their surfaces.

When the researchers altered Arc so that it was unable to bind these two proteins, cells were unable to "swallow" and wound up with more receptors than normal on their surfaces. Adding more Arc to cells caused the opposite to happen; the cells hyperactively swallowed up too many receptors, leaving few at the surface.

Unfortunately, it's possible to over-excite a cell to death, says Worley, and if the excitation controls come off, the strength of long-term memory is altered.

So what does Arc's control over brain cell receptors mean for our ability to remember where we put the car keys? "We know that animals lacking Arc live only in the here and now. They learn fine in the short term, but tomorrow they will need to relearn everything," says Worley. And in the case of long-term memories that are better forgotten, such as that cigarette craving while sitting in a bar, a better understanding of how these memories form promises hope that there might be a way in the future to forget them entirely.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: ARC Control Protein Receptors Researchers Worley chemicals memories

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>