Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence that subliminal is not so 'sub'

10.11.2006
The popular notion of subliminal information is that it streams into an unguarded mind, unchecked and unprocessed. However, neurobiologists' experiments are now revealing that the brain does consciously process subliminal information and that such processing influences how that subliminal information is perceived.

In an article in the November 9, 2006, issue of the journal Neuron, published by Cell Press, Kimihiro Nakamura and colleagues report experiments with human volunteers demonstrating such "top-down" processing of subliminal information.

Their findings also shed light on the neural mechanism by which reading a printed word evokes the representation of the spoken form. This "lexical-phonological" linkage is critical to learning to read and is disrupted in some forms of reading disorders.

In the researchers' experiments, they showed volunteers either words or pronounceable nonwords and asked them to perform either a lexical task or a pronunciation task on the words. The lexical task was to identify whether the word they saw was a real word or a nonsense word.

... more about:
»TMS »neural »perceived »subliminal

However, unbeknownst to the subjects, they had been first presented with a subliminal word that either matched or didn't match the target word. Such subliminal words were "masked" with nonsense characters that would render the presentation subliminal. The researchers' initial experiments showed that presenting subliminal words identical to the target word produced a "priming" effect in which subjects responded faster on the lexical or pronunciation tasks.

The researchers next applied a harmless magnetic pulse--called transcranial magnetic stimulation (TMS)--to two key regions of the brain involved in such perception, before presenting the priming word. The two regions were known to be involved in either converting visually perceived words to phonological representations or to integrating perceived words across visual and auditory modes. TMS is known to transiently affect neural function in a target area.

Nakamura and colleagues found that TMS applied to one brain area or the other could selectively disrupt the priming effect for either the lexical or pronunciation task. The researchers concluded that the conscious task instruction for either of the tasks caused a different neural network to be engaged for generating the appropriate behavioral response.

They concluded that their results "provide direct evidence for the proposal that even the unconscious processing of incoming stimuli operates under the strong influence of the conscious task instructions." They also concluded that "results further suggest that such top-down, strategic control modulates the bottom-up neural activation produced by unconsciously perceived words to set up a different neural circuit for generating the intended behavioral response."

In a preview of the Neuron paper, Stanislas Dehaene and Lionel Naccache commented that "perhaps the most important implications of the Nakamura et al. study concern our concept of automaticity. Many theories of human cognition postulate that nonconscious cognitive processes are automatic and independent of attention. Recently, however, experimental reports using the masked priming paradigm have revealed that subliminal processing is affected by several top-down effects. By showing that repetition priming can be suppressed by applying TMS to distinct locations depending on the task, the present results strongly support this point of view."

Dehaene and Naccache concluded that the results "support the idea that a whole chain of processing defined by the task, once prepared consciously, can be applied to nonconsciously perceived stimuli. Thus, 'subliminal' is not synonymous with 'automatic' or 'task-independent.' Our expectations shape our processing of subliminal stimuli."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org

Further reports about: TMS neural perceived subliminal

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>