Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccination with embryonic stem cells prevents lung cancer in mice

09.11.2006
Researchers in America have discovered that vaccinating mice with embryonic stem cells prevented lung cancer in those animals that had had cancer cells transplanted into them after the vaccination or that had been exposed to cancer-causing chemicals.

The findings suggest that it could be possible to develop embryonic stem cell vaccines that prevent cancers in humans, such as hereditary breast and colon cancer and lung cancer caused by smoking or other environmental factors.

Professor John Eaton told a news briefing at the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Wednesday 8 November): “We found that the vaccinations were between 80-100% effective in preventing tumour growth in mice that were subsequently challenged with transplanted Lewis lung carcinoma, and it was between 60-90% effective in mice subsequently exposed to carcinogens that cause lung cancer.

“Our results raise the exciting possibility of developing a prophylactic vaccine capable of preventing the appearance of various types of cancers in humans, especially those with hereditary, chronological or environmental predispositions to neoplastic disease.”

However, he warned that the work was still in its early stages and that people should not think that, for instance, they could start, or carry on, smoking because a vaccine to prevent lung cancer was just around the corner.

“Cancer has been prevented and even cured in mice hundreds of times. At present, all I can say is that so far it looks good, and that, unless something unexpected happens, this strategy might some day be applied to humans at high risk for development of cancer. The likelihood of this happening is more a question for the US Food and Drug Agency than for us. Given their stringent regulations I consider it quite likely that, by the time this is tried in humans, I will be pushing up daisies.”

Prof Eaton is the James Graham Brown Professor of Cancer Biology and Deputy Director of the James Graham Brown Cancer Center, University of Louisville, USA. He and his colleague, Dr Robert Mitchell, tested two different vaccines in the mice. One consisted of embryonic stem cells (ESC) only, obtained from mouse blastocysts (very early, pre-implantation embryos). The other vaccine consisted of the ESCs combined with cultured fibroblast cells producing GM-CSF, a growth factor usually made by white blood cells and blood vessel-lining endothelial cells, which “supercharges” the immune response and appears to enhance the vaccine-induced immunity to cancer.

Prof Eaton explained: “We needed a delivery vehicle for GM-CSF and chose STO fibroblasts because they are often used as a 'feeder layer' to maintain these particular mouse embryonic stem cells in their embryonic state. If we had used only ESCs expressing GM-CSF, they might have differentiated into non-embryonic cells, which, therefore, would not have worked as a vaccine.”

He and his team injected mice with ESCs alone or ESCs + STO/GM-CSF. In mice that had Lewis lung carcinoma transplanted into them afterwards, ESCs were 80% effective in preventing tumour growth and ESCs + STO/GM-CSF were 100% effective. In mice subsequently exposed to a carcinogen that causes lung cancer (3-methylcholanthrene followed by repetitive dosing with butylated hydroxytoluene), ESCs resulted in 60% of mice remaining tumour free after 27 weeks and ESC + STO/GM-CSF resulted in 90% remaining tumour free. Importantly, tumours arising in vaccinated mice were, on average, about 80-90% smaller than tumours in unvaccinated mice. All the unvaccinated mice developed tumours. None of the vaccinated mice developed autoimmune disease or a showed a significant decline in adult pluripotent bone marrow stem cells – both potential adverse responses to the vaccinations.

Prof Eaton said: “We think the results from the carcinogen-initiated cancers are probably the most important, as they are closer to the ‘real-life’ model of the development of cancer than just implanting cancer cells in an animal. We are studying several different types of carcinogen-induced mouse cancers (skin, colon, breast) to determine whether the preventative effect of vaccination extends beyond our models of lung cancer (although in our state of Kentucky with its high smoking rates, lung cancer alone would be a big victory). We may also vaccinate ageing rodents, the majority of which develop endocrine tumours in old age.

“In terms of human testing, if all goes well, then I think this vaccination might best be tested in women at high (genetic) risk of breast cancer, in people with high (genetic) risk of colon cancer and, perhaps, in smokers.

“Our progress over the next few years will depend, to a large extent, on whether we can attract significant funding. Our work is presently supported by a pilot grant from our cancer centre and a small grant from the Kentucky Lung Cancer Research Program. US federal funding agencies such as the NIH – notorious for funding predictable research – have been quite disinterested.”

[1]EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].

Emma Mason | alfa
Further information:
http://www.eortc.org

Further reports about: ESC Embryonic embryonic stem cell lung cancer prevent tumour vaccination

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>