Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists’ cell discovery unearths evolutionary clues

27.10.2006
The full family tree of the species known as social amoebas has been plotted for the first time - a breakthrough which will provide important clues to the evolution of life on earth.

Researchers, headed by biochemist Professor Pauline Schaap, of the University of Dundee, and evolutionary biologist Professor Sandie Baldauf, of the University of York, have produced the first molecular ‘dictionary’ of the 100 or so known species of social amoeba.

Using this family tree, they have devised a model system to establish how single cell organisms communicate and interact to create multi-cellular structures in response to changing environmental conditions. Previously, there was almost no molecular data for social amoeba - Dictyostelia - which are a hugely diverse and ancient group.

Social amoebas are a group of organisms with a genetic diversity that is greater than that of fungi and similar to that of all animals. They offer an excellent experimental system for studying aspects of evolution and communication that are not easy to study in more complex multi-cellular organisms.

... more about:
»Evolution »Molecular »amoeba »organism

The York and Dundee teams have worked with field biologists in Germany, the US and Japan, and their research is published today (Friday 27th October 2006) in the prestigious international journal Science.

“This provides a starting point in allowing us to examine what happens at the molecular level as species evolve and mutate,” said Professor Schaap, of the Division of Cell and Developmental Biology in the College of Life Sciences at Dundee.

“The availability of a family tree allows us to reconstruct the evolution of the signalling mechanisms that generate multicellularity. It also provides a powerful tool to identify core ancestral processes that regulate the most basic aspects of development.”

Professor Baldauf, of the Department of Biology at York, said: “We have investigated the evolution of plants and animals for a very long time but our whole eco-system depends on single cell organisms. If we want to look at the fundamentals of life we have to look at single cell organisms.

“Amoebas are some of the closest single cell relatives of animals so understanding how they work and evolve is important because it helps us to understand how animals evolve. We have developed a new model system for the study of the evolution of forms.

“We have written the dictionary. Now we know what the words are -- but we still have to construct the sentences.”

The research teams were able to build the family tree by amplifying and comparing highly conserved genes from all known species of social amoeba.

The existing family tree of the social amoeba was based on how the multicellular structures of each species look on the outside. However, this tree was completely uprooted by the molecular data gathered by the researchers in Dundee and York.

By plotting all existing information of the amoebas’ cellular and multi-cellular shapes and behaviour to the molecular tree, it appeared that increased cell specialization and organism size is a major trend in the evolution of social amoeba.

Professor Schaap and her team are now working to establish how the regulation and function of genes with important roles in development was altered and elaborated during the course of evolution to generate novel cell-types and morphological features.

The next step for Professor Baldauf and her team will be to investigate the origin of these amoebas, and also to search for new species and to establish their position on the family tree. Meanwhile, a number of research projects, including teams in the USA and Germany, have won sponsorship to sequence the genomes of social amoeba species identified by the work in York and Dundee.

The Dundee-York project was funded under the Biotechnology and Biological Sciences Research Council (BBSRC) CODE (COmparative DEvelopment) initiative and took four years to complete.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

Further reports about: Evolution Molecular amoeba organism

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>