Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone resistance of pituitary tumors and Cushing disease explained

25.10.2006
Montréal scientists led by Dr Jacques Drouin, researcher at the Institut de recherches cliniques de Montréal (IRCM), and collaborators from around the world (Canada, France, the Netherlands and United States) unravel mechanism of hormone resistance in pituitary tumors of Cushing disease patients.

Cushing disease is caused by pituitary tumors that produce excessive amounts of hormone because the tumor cells have become resistant to negative feedback control by a class of steroid hormones, glucocorticoids. In Cushing disease, this excessive hormone production can lead to hypertension, obesity, diabetes and osteoporosis.

Through detailed molecular investigation of the mechanism of this negative feedback, a Montréal research group has identified two essential components (proteins) of this feedback mechanism. Extrapolating from these basic studies, they have shown that about half of the pituitary tumors from Cushing disease patients are deficient in expression of either of these proteins, thus providing a molecular explanation for the hormone resistance that is the hallmark, and likely first event, in the formation of these tumors.

The novel insight provided by knowledge of the basic mechanism of hormone resistance will lead to the rational design of therapeutic approaches for the better management of Cushing disease patients. This insight will also help understand other forms of hormone resistant cancers.

... more about:
»Cushing »Disease »IRCM »Montreal »hormone

Dr. Jacques Drouin is the Director of the Molecular Genetics Research Unit at IRCM. He holds the GlaxoSmithKline Chair in Molecular Genetics. The IRCM (www.ircm.qc.ca) is recognized as one of the country's top-performing research centres. It has a mandate to establish links between research and patients, promote the prevention of illness, and train a new generation of high-level scientists. The IRCM has 37 research units and a staff of more than 450. The IRCM is also affiliated to Université de Montréal.

Lucette Thériault | EurekAlert!
Further information:
http://www.ircm.qc.ca

Further reports about: Cushing Disease IRCM Montreal hormone

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>