Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA scientists unravel 'molecular inch-worm' structure of walking-pneumonia bacterium

24.10.2006
Researchers at the University of Georgia, using glow-in-the-dark proteins and microcinematography, have helped unravel the development and function of a complex organelle in the bacterium that causes "walking pneumonia."

The researchers have described in new, precise detail the unique cell extension that forms on one end of the bacterium Mycoplasma pneumoniae. This structure, called a "terminal organelle," performs several tasks for this pervasive bacterium and even acts as a "molecular inch-worm," helping the microorganism move.

"Mycoplasmas are among the simplest known prokaryotes--only a fraction the size of other health-related bacteria such as E. coli," said microbiologist Duncan Krause, leader of the research team. "They are true minimalists with very small genomes, lacking the typical cell regulatory mechanisms found in other bacteria. And yet some species such as M. pneumoniae posses this complex terminal organelle. We've been able to observe it in growing cultures and describe the choreography of events at a level of detail not previously possible."

The research is being published this week in The Proceedings of the National Academy of Sciences. Other authors of the paper include graduate student Benjamin Hasselbring, undergraduate Robert Krause and former graduate student Jarrat Jordan.

... more about:
»Organelle »bacterium »pneumonia »structure

M. pneumoniae infections affect millions worldwide, causing chronic bronchitis and atypical or "walking pneumonia," a term that describes cases of pneumonia that are distinct from acute, life-threatening pneumonia requiring a patient's hospitalization.

Krause and others have been increasingly interested in the terminal organelle that develops on one end of M. pneumoniae because it is involved in cell division, adherence to respiratory tissues and a little-understood mechanism of propulsion called "gliding motility."

Bacteria can move in a variety of ways, including the use of flagella to "swim." But since M. pneumoniae lack flagella, they "glide," a method of movement that has been known for some time yet never entirely understood. The cells seem to bend and flex, but it's unclear how that is accomplished. The new data indicate that gliding is essential for cell division in M. pneumoniae.

"In addition to its significant impact on public health, M. pneumoniae is intriguing from a biological perspective," said Krause. "They have no cell walls, and their genome is among the smallest known for a cell capable of a free-living existence."

Other researchers, using electron microscopy, have described the basic structure of the terminal organelle, but Krause's team went further, using fluorescence microscopy and fluorescent protein fusions that allowed them to track the actions of specific proteins in live, growing cells. Time-lapse digital imaging let them see the development and activity of this structure in real time--giving new clues about function and demonstrating that, contrary to previous thinking, multiple new terminal organelles often form before cell division is observed.

From the standpoint of basic science, this research demonstrates the feasibility of using fluorescent proteins to study how organelles in these incredibly tiny bacteria grow and what their functions are. From a medical standpoint, however, they point the way to potential new drug targets and therapies to stop walking pneumonia and chronic bronchitis infections in their tracks.

Since the organelle is involved in colonization of epithelial tissues in human lungs, finding a way to stop such attachment or gliding could halt infections or make them far less severe.

"M. pneumoniae accounts for 20 percent of community-acquired pneumonias in this country," said Krause. "Finding out more about how the bacterium that causes the disease works gives us a new edge in thinking of ways to overcome such infections."

Philip Lee Williams | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: Organelle bacterium pneumonia structure

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>