Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UGA scientists unravel 'molecular inch-worm' structure of walking-pneumonia bacterium

Researchers at the University of Georgia, using glow-in-the-dark proteins and microcinematography, have helped unravel the development and function of a complex organelle in the bacterium that causes "walking pneumonia."

The researchers have described in new, precise detail the unique cell extension that forms on one end of the bacterium Mycoplasma pneumoniae. This structure, called a "terminal organelle," performs several tasks for this pervasive bacterium and even acts as a "molecular inch-worm," helping the microorganism move.

"Mycoplasmas are among the simplest known prokaryotes--only a fraction the size of other health-related bacteria such as E. coli," said microbiologist Duncan Krause, leader of the research team. "They are true minimalists with very small genomes, lacking the typical cell regulatory mechanisms found in other bacteria. And yet some species such as M. pneumoniae posses this complex terminal organelle. We've been able to observe it in growing cultures and describe the choreography of events at a level of detail not previously possible."

The research is being published this week in The Proceedings of the National Academy of Sciences. Other authors of the paper include graduate student Benjamin Hasselbring, undergraduate Robert Krause and former graduate student Jarrat Jordan.

... more about:
»Organelle »bacterium »pneumonia »structure

M. pneumoniae infections affect millions worldwide, causing chronic bronchitis and atypical or "walking pneumonia," a term that describes cases of pneumonia that are distinct from acute, life-threatening pneumonia requiring a patient's hospitalization.

Krause and others have been increasingly interested in the terminal organelle that develops on one end of M. pneumoniae because it is involved in cell division, adherence to respiratory tissues and a little-understood mechanism of propulsion called "gliding motility."

Bacteria can move in a variety of ways, including the use of flagella to "swim." But since M. pneumoniae lack flagella, they "glide," a method of movement that has been known for some time yet never entirely understood. The cells seem to bend and flex, but it's unclear how that is accomplished. The new data indicate that gliding is essential for cell division in M. pneumoniae.

"In addition to its significant impact on public health, M. pneumoniae is intriguing from a biological perspective," said Krause. "They have no cell walls, and their genome is among the smallest known for a cell capable of a free-living existence."

Other researchers, using electron microscopy, have described the basic structure of the terminal organelle, but Krause's team went further, using fluorescence microscopy and fluorescent protein fusions that allowed them to track the actions of specific proteins in live, growing cells. Time-lapse digital imaging let them see the development and activity of this structure in real time--giving new clues about function and demonstrating that, contrary to previous thinking, multiple new terminal organelles often form before cell division is observed.

From the standpoint of basic science, this research demonstrates the feasibility of using fluorescent proteins to study how organelles in these incredibly tiny bacteria grow and what their functions are. From a medical standpoint, however, they point the way to potential new drug targets and therapies to stop walking pneumonia and chronic bronchitis infections in their tracks.

Since the organelle is involved in colonization of epithelial tissues in human lungs, finding a way to stop such attachment or gliding could halt infections or make them far less severe.

"M. pneumoniae accounts for 20 percent of community-acquired pneumonias in this country," said Krause. "Finding out more about how the bacterium that causes the disease works gives us a new edge in thinking of ways to overcome such infections."

Philip Lee Williams | EurekAlert!
Further information:

Further reports about: Organelle bacterium pneumonia structure

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>