Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new gene responsible for brittle bone disease

23.10.2006
A team of researchers has identified a new genetic mutation responsible for osteogenesis imperfecta (OI), a condition that makes bones much more likely to break, according to a study published today in the journal Cell.

Victims may experience just a few fractures in a lifetime or several hundred beginning before birth. The number of Americans affected is unknown, but estimates range from 20,000 to 50,000. While the study is an important early step in the search for a cure, its immediate effect may be to exonerate an expanded group of parents whose children frequently appear in emergency rooms with unexplained fractures, and who may be accused of child abuse.

The study was led by Brendan Lee, M.D., Ph.D., associate professor of Molecular and Human Genetics at the Baylor College of Medicine. Brendan Boyce, M.D. professor of Pathology at the University of Rochester Medical Center, added expertise to the large, international research team in the analysis of skeletal defects caused by lack of effective function in the newly discovered gene.

Previously, OI was known only as a genetic disorder in the formation of collagen fibers, the protein framework of which bone and cartilage are built. People with OI were known to have a faulty gene that instructed their bodies to make either too little or weak collagen because of defects or mutations in one of the collagen genes, of which there are more than 20. The current study found a new gene, that when mutated, reduces the ability of a protein involved in collagen formation, called CRTAP (cartilage-associated protein), to guide collagen production as it forms the proper framework of bone.

... more about:
»CRTAP »Children »Collagen »Genetic »Mutation

"The study is important because it clarifies a new mechanism by which the OI can occur and makes possible new tests to identify affected children and provide them with added medical support," Boyce said. "There may be up to 15 percent of children with Brittle Bone Disease who have mutations related to the new gene. Although the number of affected children is small, the demonstration that they have an inherited form of OI could have a major impact on their future health and quality of life."

Study Details

In the study, mice were genetically engineered by the Baylor team with the CRTAP gene removed, and then monitored for signs of abnormalities. Results showed that the mice were unable to properly line up the fibers that make up collagen using an enzyme called 3-prolyl hydroxylase, which they determined needs to bind to CRTAP for it to function normally. As a result of the loss of normal 3-prolyl hydroxylase function, the cells that build bone (osteoblasts) were found to make thicker collagen fibers, but fewer of them, resulting in weaker bone.

Boyce and his group in the Center for Musculoskeletal Research at the Medical Center characterized the skeletal abnormalities in the genetically engineered mice and carried out studies of bone cells from the mice as well as detailed microscopic analysis of their bones. They found that, without this key gene, mice developed osteoporosis due to defects in their osteoblasts. Another team working at McGill University in Montreal identified human patients who had OI due to mutations in CRTAP, demonstrating for the first time that CRTAP has an essential function in humans.

In addition, the findings of the current study provide the first proof that osteogenesis imperfecta can be inherited in a recessive manner. Previously, the genes known to be involved in OI were dominant, meaning that if you had a defect in the gene in your chromosome, you developed the disease. That left open the possibility that the mutation causing OI was spontaneous, that something went wrong for the first time in the gene of the person developing it, and not inherited from parents.

The newly discovered gene however is a recessive trait, signifying that the disease can be passed down generation to generation, with recessive forms accounting for recurrence. When each parent has one mutated gene and one normal gene, they have one-in-four chance of having a child with osteogenesis imperfecta.

Funding for the research came from the National Institutes of Health, the Baylor College of Medicine Developmental Disabilities Research Center, and the Shriners of North America. Others institutes participating were the Istituto Nazionale per la Ricerca sul Cancro in Genova, Italy, The Shriners Hospital for Children in Oregon, McGill University in Montreal and The University of Washington in Seattle.

"Beyond OI, there may be other connective tissue disorders caused by mutations in genes associated with 3-prolyl hydroxylation, a process that occurs in many types of tissues," Boyce said. "Current treatment for OI does not cure the disease and is designed to reduce the risk of fracture. Only through a better understanding of the disease at the genetic and protein level will we be able to someday offer something better."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: CRTAP Children Collagen Genetic Mutation

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>