Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new gene responsible for brittle bone disease

23.10.2006
A team of researchers has identified a new genetic mutation responsible for osteogenesis imperfecta (OI), a condition that makes bones much more likely to break, according to a study published today in the journal Cell.

Victims may experience just a few fractures in a lifetime or several hundred beginning before birth. The number of Americans affected is unknown, but estimates range from 20,000 to 50,000. While the study is an important early step in the search for a cure, its immediate effect may be to exonerate an expanded group of parents whose children frequently appear in emergency rooms with unexplained fractures, and who may be accused of child abuse.

The study was led by Brendan Lee, M.D., Ph.D., associate professor of Molecular and Human Genetics at the Baylor College of Medicine. Brendan Boyce, M.D. professor of Pathology at the University of Rochester Medical Center, added expertise to the large, international research team in the analysis of skeletal defects caused by lack of effective function in the newly discovered gene.

Previously, OI was known only as a genetic disorder in the formation of collagen fibers, the protein framework of which bone and cartilage are built. People with OI were known to have a faulty gene that instructed their bodies to make either too little or weak collagen because of defects or mutations in one of the collagen genes, of which there are more than 20. The current study found a new gene, that when mutated, reduces the ability of a protein involved in collagen formation, called CRTAP (cartilage-associated protein), to guide collagen production as it forms the proper framework of bone.

... more about:
»CRTAP »Children »Collagen »Genetic »Mutation

"The study is important because it clarifies a new mechanism by which the OI can occur and makes possible new tests to identify affected children and provide them with added medical support," Boyce said. "There may be up to 15 percent of children with Brittle Bone Disease who have mutations related to the new gene. Although the number of affected children is small, the demonstration that they have an inherited form of OI could have a major impact on their future health and quality of life."

Study Details

In the study, mice were genetically engineered by the Baylor team with the CRTAP gene removed, and then monitored for signs of abnormalities. Results showed that the mice were unable to properly line up the fibers that make up collagen using an enzyme called 3-prolyl hydroxylase, which they determined needs to bind to CRTAP for it to function normally. As a result of the loss of normal 3-prolyl hydroxylase function, the cells that build bone (osteoblasts) were found to make thicker collagen fibers, but fewer of them, resulting in weaker bone.

Boyce and his group in the Center for Musculoskeletal Research at the Medical Center characterized the skeletal abnormalities in the genetically engineered mice and carried out studies of bone cells from the mice as well as detailed microscopic analysis of their bones. They found that, without this key gene, mice developed osteoporosis due to defects in their osteoblasts. Another team working at McGill University in Montreal identified human patients who had OI due to mutations in CRTAP, demonstrating for the first time that CRTAP has an essential function in humans.

In addition, the findings of the current study provide the first proof that osteogenesis imperfecta can be inherited in a recessive manner. Previously, the genes known to be involved in OI were dominant, meaning that if you had a defect in the gene in your chromosome, you developed the disease. That left open the possibility that the mutation causing OI was spontaneous, that something went wrong for the first time in the gene of the person developing it, and not inherited from parents.

The newly discovered gene however is a recessive trait, signifying that the disease can be passed down generation to generation, with recessive forms accounting for recurrence. When each parent has one mutated gene and one normal gene, they have one-in-four chance of having a child with osteogenesis imperfecta.

Funding for the research came from the National Institutes of Health, the Baylor College of Medicine Developmental Disabilities Research Center, and the Shriners of North America. Others institutes participating were the Istituto Nazionale per la Ricerca sul Cancro in Genova, Italy, The Shriners Hospital for Children in Oregon, McGill University in Montreal and The University of Washington in Seattle.

"Beyond OI, there may be other connective tissue disorders caused by mutations in genes associated with 3-prolyl hydroxylation, a process that occurs in many types of tissues," Boyce said. "Current treatment for OI does not cure the disease and is designed to reduce the risk of fracture. Only through a better understanding of the disease at the genetic and protein level will we be able to someday offer something better."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: CRTAP Children Collagen Genetic Mutation

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>