Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential New Therapeutic Target for Asthma, Allergies and Cancer

19.10.2006
Transport mechanism of bioactive molecule, S1P, identified

Virginia Commonwealth University researchers have identified how a bioactive molecule involved with allergy, inflammation and cancer is transported out of mast cells, according to findings published online this week in the Proceedings of the National Academy of Sciences.

Mast cells are specialized cells that react to allergy-causing agents by releasing substances that trigger the body's allergic response, leading to conditions like asthma and hives. Among the molecules released by mast cells that participate in the allergic response is sphingosine-1-phosphate. This molecule is also implicated in cancer.

The work by the VCU investigators opens up a new approach to treating asthma, which affects about 15 million Americans and is increasing in incidence and mortality, especially among African-Americans. It also has implications for other allergic disorders and for cancer in terms of developing drugs that inhibit the transport of SIP out of cells.

... more about:
»Allergic »Molecule »S1P »VCU »mast cells

Sarah Spiegel, Ph.D., professor and chair, VCU Department of Biochemistry, and colleagues reported how S1P, which also regulates many important physiological functions in cells, is transported out of mast cells. S1P is produced by all cells and secreted by some cells into the circulation where it can bind to specific S1P receptors. Until now, researchers have not known the mechanism by which S1P is transported out of cells.

"Our study shows that mast cells can use a special kind of transporter that has long been known to be used by cancer cells to push anti-cancer drugs out and help them survive the treatment," said Spiegel. "Our study is the first to establish a mechanism by which S1P can be exported out of mast cells and perhaps by cancer cells as well."

In previous research, Spiegel's team found that S1P levels are significantly elevated in fluid collected from the lungs of asthmatic patients after exposure to an allergen. Those findings led Spiegel's team to believe that mast cells could be a source of S1P. Mast cells are found in all body tissues and rapidly produce and secrete a number of inflammatory substances such as histamine and S1P when activated by an inflammatory stimulus. Spiegel said that S1P in turn amplifies allergic and inflammatory responses. Therefore, S1P secreted from mast cells can orchestrate many allergic responses, including asthma, she said.

This work was supported by a grant from the National Institutes of Health.

The team included researchers Poulami Mitra, a Ph.D. candidate, Carole A. Oskeritzian, Ph.D., Shawn G. Payne, Ph.D., from the VCU Department of Biochemistry; Michael A. Beaven, Ph.D., a researcher with the National Heart, Lung, and Blood Institute; and Sheldon Milstien, Ph.D., a neuroscientist with the National Institute of Mental Health.

About VCU and the VCU Medical Center:

Located on two downtown campuses in Richmond, Va., Virginia Commonwealth University ranks among the top 100 universities in the country in sponsored research and enrolls 30,000 students in more than 180 certificate, undergraduate, graduate, professional and doctoral programs in the arts, sciences and humanities in 15 schools and one college. Sixty of the university’s programs are unique in Virginia, and 20 graduate and professional programs have been ranked by U.S. News & World Report as among the best of their kind. MCV Hospitals, clinics and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the leading academic medical centers in the country.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

Further reports about: Allergic Molecule S1P VCU mast cells

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>