Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover mechanism that determines when detailed memories are retained

17.10.2006
The levels of a chemical released by the brain determine how detailed a memory will later be, according to researchers at UC Irvine.

The neurotransmitter acetylcholine, a brain chemical already established as being crucial for learning and memory, appears to be the key to adding details to a memory. In a study with rats, Norman Weinberger, research professor of neurobiology and behavior, and colleagues determined that a higher level of acetylcholine during a learning task correlated with more details of the experience being remembered. The results are the first to tie levels of acetylcholine to memory specificity and could have implications in the study and treatment of memory-related disorders.

The findings appear in the November issue of the journal Neurobiology of Learning and Memory.

"This is the first time that direct stimulation of a brain region has controlled the amount of detail in a memory," said Weinberger, a fellow at UCI's Center for the Neurobiology of Learning and Memory. "While it is likely that the brain uses a number of mechanisms to store specific details, our work shows that the level of acetylcholine appears to be a key part of that process."

... more about:
»Stimulation »acetylcholine »frequencies

In their experiments, the researchers exposed rats to tones of various frequencies. During some of the trials, they paired one tone with stimulation of a section of the rats' brains known as the nucleus basalis, which relays commands to the auditory cortex by secreting acetylcholine. During some experiments, the stimulation of the nucleus basalis was weak, whereas in other animals the stimulation was stronger. When the tones were replayed the next day, the scientists could measure how well they remembered the various frequencies by measuring changes in their respiration rates.

The results showed that a weak activation of the nucleus basalis, which resulted in a small amount of acetylcholine being released, did lead the rats to remember the tones but not specific frequencies. However, when the stimulation was greater (leading to the higher level of acetylcholine release), the rats also remembered the specific frequencies.

"We have always known that acetylcholine plays a major role in learning and memory," Weinberger said. "For example, the major treatments currently available for Alzheimer's disease work by making more acetylcholine available in the brain. Finding ways to control the levels of this key transmitter would be crucial for treating a number of memory-related disorders."

Weinberger is a pioneer in research in the field of learning and memory in the auditory system. In a study published in 2005, he discovered a neural coding mechanism that the brain relies upon to register the intensity of memories based on the importance of the experience. The study presented the first evidence that a "memory code" of any kind may exist. His laboratory also was the first to induce a specific memory by stimulating the system involving acetylcholine in the brain, setting the stage for the latest findings.

Farnaz Khadem | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Stimulation acetylcholine frequencies

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>