Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse tests predict drug response in relapsing pancreatic cancer patients

13.10.2006
By slicing up bits of patient tumors and grafting them into mice, Johns Hopkins Kimmel Cancer Center specialists have figured out how to accurately "test drive" chemotherapy drugs to learn in advance which drug treatments offer each individual pancreatic cancer patient the best therapeutic journey.

Although "xenografting" with either cells or fresh tissue is already used widely to test cancer therapies, the Hopkins design is personalized to each patient who has relapsed after an initial course of chemotherapy. "Eventually our approach offers a promising way to individualize therapy earlier in treatment instead of first giving everyone the standard drug gemcitabine, which has a success rate of less than 10 percent," says Antonio Jimeno, M.D., instructor in oncology at the Johns Hopkins Kimmel Cancer Center.

Results of preliminary tests of the Hopkins method in 14 patient samples taken after surgery shows that each xenografts' genetic profile remained stable through three and four generations of mice so that "test drives" would accurately represent a patient's tumor. The scientists also found they could build xenografts in 80 percent of their pancreatic patients, a success rate higher than efforts with colon cancer patients, for which rates are typically less at about 50 percent.

Reporting on their work in a recent issue of Clinical Cancer Research and at the September meeting of the American Association for Cancer Research in Chicago, the Hopkins team said it took tiny bits of a patient's tumor removed after surgery, and implanted them into one or two mice. After letting the resulting tumor grow for several months, they removed the mass and cut it into pieces to implant into additional mice, eventually creating 20 animals containing matching samples of a single patient's tumor.

... more about:
»Cancer »Drug »pancreatic »patient' »xenograft

"By scaling up this way, we got enough tumor samples to randomize mice into groups for testing candidate drugs," says Manuel Hidalgo, M.D., Ph.D., associate professor at Hopkins' Kimmel Cancer Center, who says the process currently requires about six months to get information on which drugs work best. "In the meantime, most patients are receiving their first rounds of chemotherapy and radiation. Initially, xenograft information can guide therapy once patients relapse, which is generally in nine to twelve months with pancreatic cancer."

The Hopkins group is conducting a clinical trial of the xenograft model in 40 patients undergoing surgery at Johns Hopkins for non-metastatic pancreas cancer. In the trial, a portion of each patient's tumor is shuttled directly from the pathologist to the Hopkins' laboratory where the first mice are implanted and the 20 mice "built" to test the 20 or so drugs currently available against pancreatic cancer.

Says Jimeno, "If this model works, then we'll need to develop ways to apply it to a broader population of pancreatic cancer patients since there are significant laboratory resources necessary for each patient."

Information from the study also may reveal new biomarkers that predict drug response and data on how certain therapies act within the body. Ultimately, they hope to broaden use of xenografting to tumor samples that can be accessed via biopsy through fine needle aspiration.

Pancreatic cancer accounts for more than 33,000 new cases in the United States and almost as many deaths. It is one of the deadliest cancers, with less than five percent of patients living beyond five years.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org

Further reports about: Cancer Drug pancreatic patient' xenograft

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>