Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse tests predict drug response in relapsing pancreatic cancer patients

13.10.2006
By slicing up bits of patient tumors and grafting them into mice, Johns Hopkins Kimmel Cancer Center specialists have figured out how to accurately "test drive" chemotherapy drugs to learn in advance which drug treatments offer each individual pancreatic cancer patient the best therapeutic journey.

Although "xenografting" with either cells or fresh tissue is already used widely to test cancer therapies, the Hopkins design is personalized to each patient who has relapsed after an initial course of chemotherapy. "Eventually our approach offers a promising way to individualize therapy earlier in treatment instead of first giving everyone the standard drug gemcitabine, which has a success rate of less than 10 percent," says Antonio Jimeno, M.D., instructor in oncology at the Johns Hopkins Kimmel Cancer Center.

Results of preliminary tests of the Hopkins method in 14 patient samples taken after surgery shows that each xenografts' genetic profile remained stable through three and four generations of mice so that "test drives" would accurately represent a patient's tumor. The scientists also found they could build xenografts in 80 percent of their pancreatic patients, a success rate higher than efforts with colon cancer patients, for which rates are typically less at about 50 percent.

Reporting on their work in a recent issue of Clinical Cancer Research and at the September meeting of the American Association for Cancer Research in Chicago, the Hopkins team said it took tiny bits of a patient's tumor removed after surgery, and implanted them into one or two mice. After letting the resulting tumor grow for several months, they removed the mass and cut it into pieces to implant into additional mice, eventually creating 20 animals containing matching samples of a single patient's tumor.

... more about:
»Cancer »Drug »pancreatic »patient' »xenograft

"By scaling up this way, we got enough tumor samples to randomize mice into groups for testing candidate drugs," says Manuel Hidalgo, M.D., Ph.D., associate professor at Hopkins' Kimmel Cancer Center, who says the process currently requires about six months to get information on which drugs work best. "In the meantime, most patients are receiving their first rounds of chemotherapy and radiation. Initially, xenograft information can guide therapy once patients relapse, which is generally in nine to twelve months with pancreatic cancer."

The Hopkins group is conducting a clinical trial of the xenograft model in 40 patients undergoing surgery at Johns Hopkins for non-metastatic pancreas cancer. In the trial, a portion of each patient's tumor is shuttled directly from the pathologist to the Hopkins' laboratory where the first mice are implanted and the 20 mice "built" to test the 20 or so drugs currently available against pancreatic cancer.

Says Jimeno, "If this model works, then we'll need to develop ways to apply it to a broader population of pancreatic cancer patients since there are significant laboratory resources necessary for each patient."

Information from the study also may reveal new biomarkers that predict drug response and data on how certain therapies act within the body. Ultimately, they hope to broaden use of xenografting to tumor samples that can be accessed via biopsy through fine needle aspiration.

Pancreatic cancer accounts for more than 33,000 new cases in the United States and almost as many deaths. It is one of the deadliest cancers, with less than five percent of patients living beyond five years.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org

Further reports about: Cancer Drug pancreatic patient' xenograft

More articles from Life Sciences:

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>