Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful genome ID method extended to humans

11.10.2006
For cancer biology and other medical applications, optical mapping reveals more than traditional DNA sequencing

A mathematical discovery has extended the reach of a novel genome mapping method to humans, potentially giving cancer biology a faster and more cost-effective tool than traditional DNA sequencing.

A student-led group from the laboratory of Michael Waterman, USC University Professor in molecular and computational biology, has developed an algorithm to handle the massive amounts of data created by a restriction mapping technology known as "optical mapping." Restriction maps provide coordinates on chromosomes analogous to mile markers on freeways.

Lead author Anton Valouev, a recent graduate of Waterman's lab and now a postdoctoral fellow at Stanford University, said the algorithm makes it possible to optically map the human genome.

... more about:
»DNA »Genome »Sequencing »method

"It carries tremendous benefits for medical applications, specifically for finding genomic abnormalities," he said.

The algorithm appears in this week's PNAS Early Edition.

Optical mapping was developed at New York University in the late 1990s by David Schwartz, now a professor of chemistry and genetics at the University of Wisconsin-Madison. Schwartz and a collaborator at Wisconsin, Shiguo Zhou, co-authored the PNAS paper.

The power of optical mapping lies in its ability to reveal the size and large-scale structure of a genome. The method uses fluorescence microscopy to image individual DNA molecules that have been divided into orderly fragments by so-called restriction enzymes.

By imaging large numbers of an organism's DNA molecules, optical mapping can produce a map of its genome at a relatively low cost.

An optical map lacks the minute detail of a genetic sequence, but it makes up for that shortcoming in other ways, said Philip Green, a professor of genome sciences at the University of Washington who edited the PNAS paper.

Geneticists often say that humans have 99.9 percent of their DNA in common. But, Green said, "individuals occasionally have big differences in their chromosome structure. You sometimes find regions where there are larger changes."

Such changes could include wholesale deletions of chunks of the genome or additions of extra copies. Cancer genomes, in particular, mutate rapidly and contain frequent abnormalities.

"That's something that's very hard to detect" by conventional sequencing, Green said, adding that sequencing can simply miss part of a genome.

Optical mapping, by contrast, can estimate the absolute length of a genome and quickly detect differences in length and structure between two genomes. Comparing optical maps of healthy and diseased genomes can guide researchers to crucial mutations.

Though he called optical mapping "potentially very powerful," Green added that it requires such a high level of expertise that only a couple of laboratories in the world use the method.

The Waterman group's algorithm may encourage others to take a second look.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: DNA Genome Sequencing method

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>