Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful genome ID method extended to humans

11.10.2006
For cancer biology and other medical applications, optical mapping reveals more than traditional DNA sequencing

A mathematical discovery has extended the reach of a novel genome mapping method to humans, potentially giving cancer biology a faster and more cost-effective tool than traditional DNA sequencing.

A student-led group from the laboratory of Michael Waterman, USC University Professor in molecular and computational biology, has developed an algorithm to handle the massive amounts of data created by a restriction mapping technology known as "optical mapping." Restriction maps provide coordinates on chromosomes analogous to mile markers on freeways.

Lead author Anton Valouev, a recent graduate of Waterman's lab and now a postdoctoral fellow at Stanford University, said the algorithm makes it possible to optically map the human genome.

... more about:
»DNA »Genome »Sequencing »method

"It carries tremendous benefits for medical applications, specifically for finding genomic abnormalities," he said.

The algorithm appears in this week's PNAS Early Edition.

Optical mapping was developed at New York University in the late 1990s by David Schwartz, now a professor of chemistry and genetics at the University of Wisconsin-Madison. Schwartz and a collaborator at Wisconsin, Shiguo Zhou, co-authored the PNAS paper.

The power of optical mapping lies in its ability to reveal the size and large-scale structure of a genome. The method uses fluorescence microscopy to image individual DNA molecules that have been divided into orderly fragments by so-called restriction enzymes.

By imaging large numbers of an organism's DNA molecules, optical mapping can produce a map of its genome at a relatively low cost.

An optical map lacks the minute detail of a genetic sequence, but it makes up for that shortcoming in other ways, said Philip Green, a professor of genome sciences at the University of Washington who edited the PNAS paper.

Geneticists often say that humans have 99.9 percent of their DNA in common. But, Green said, "individuals occasionally have big differences in their chromosome structure. You sometimes find regions where there are larger changes."

Such changes could include wholesale deletions of chunks of the genome or additions of extra copies. Cancer genomes, in particular, mutate rapidly and contain frequent abnormalities.

"That's something that's very hard to detect" by conventional sequencing, Green said, adding that sequencing can simply miss part of a genome.

Optical mapping, by contrast, can estimate the absolute length of a genome and quickly detect differences in length and structure between two genomes. Comparing optical maps of healthy and diseased genomes can guide researchers to crucial mutations.

Though he called optical mapping "potentially very powerful," Green added that it requires such a high level of expertise that only a couple of laboratories in the world use the method.

The Waterman group's algorithm may encourage others to take a second look.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: DNA Genome Sequencing method

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>