Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique boosts by four times the size of a protein that researchers can analyze

09.10.2006
Imagine you had to break a secret code, but you could see only part of the message. That's the kind of frustration researchers face when trying to identify proteins and characterize how those proteins are modified in cells by biological processes.

But now, Cornell researchers have extended a powerful technique to increase by fourfold the size of a protein that can be analyzed, to those containing more than 2,000 amino acids, up from about 500.

Called a "top-down" approach, the technique uses a mass spectrometer, which measures the masses of ions or charged particles. Researchers break up the protein into pieces and weigh both the masses of the whole protein and of the individual pieces. By matching the weight of the whole protein and its pieces with those of known protein sequences in a database, they can identify the protein. Any differences in mass with known proteins can help researchers also find where and how proteins have been modified in cells.

For example, if a section of a protein has an increased weight of 16, researchers can tell that the protein has been oxidized within that section, which means that an oxygen atom (with an atomic weight of 16) was added.

"When you isolate a protein from a mixture, your first problem is to know which one it is," said Fred McLafferty, Cornell's Peter J.W. Debye Professor Emeritus of Chemistry and Chemical Biology and senior author of the paper published in the Oct. 6 issue of the journal Science. "Mass spectrometry characterizes a protein by measuring the masses produced from it."

The new technique provides a far more efficient way to break down proteins inside the mass spectrometer -- sprayed, heated and then bashed with gas molecules -- to obtain their pieces for the mass analysis. They are sprayed in an electric field where they pick up charges and are vaporized as they pass through a heated capillary. Then they are hit by air molecules in low-energy collisions to keep the protein from folding up; then they are slammed with air molecules in high-energy collisions to dissociate the protein. Next, the mass spectrometer weighs any surviving protein and its pieces simultaneously.

The top-down approach rivals the commonly used "bottom-up" approach, in which proteins are first broken down, or digested, enzymatically into smaller units of five to 20 amino acids. These pieces are then introduced into the mass spectrometer where researchers can match masses of those pieces to known sequences and identify the proteins.

However, this approach reveals less information concerning modifications to proteins. Such important cellular processes as oxidation and acetylation of proteins add chemical groups and alter how a protein functions, such as modifying an enzymatic pathway. The bottom-up approach is limited because the samples seldom have masses that represent all the pieces of the protein, and masses can usually be matched to several combinations of pieces and modifications. Therefore, the method rarely locates all modifications in newly isolated proteins.

"Each approach has different strengths and weaknesses," said Mi Jin, a postdoctoral associate in chemistry and chemical biology and one of the paper's lead authors with fellow graduate student Xuemei Han. Jin said that the bottom-up approach is often used for larger scale studies of proteins because it can identify a large number of proteins from a sample, but it does not provide a complete picture of each protein. The top-down approach, on the other hand, measures the whole protein and thus provides more confident identifications; it is also better at revealing modifications and mutations, where there might be a mistake or addition in the sequence. The new approach can also provide sequence information on a protein from scratch when it is not present in any database.

The study was funded by National Institutes of Health.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Spectrometer amino acid mass spectrometer pieces sequence weigh

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>