Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a key regulator for skin stem cells

09.10.2006
By turning on a single gene, researchers can prevent skin stem cells from maturing into the three types of adult skin cells -- epidermal, sebaceous and hair cells. They say this finding could have important implications for scientists trying to grow stem cells in the lab, for both research and potential therapies.

As researchers seek ways to manipulate stem cells, which have the ability to differentiate into multiple types of tissues, one challenge they face is maintaining the stem cells in their immature state. The newly identified repressor switch could provide part of the answer.

Led by Howard Hughes Medical Institute investigator Elaine Fuchs, the researchers published discovery of this regulator, known as Tcf3, in an article in the October 6, 2006, issue of the journal Cell. Other co-authors on the paper include Hoang Nguyen and Michael Rendl in the Fuchs laboratory at The Rockefeller University.

Tcf3 is a transcription factor, a protein that controls the activity of a collection of genes in order to coordinate their action. In earlier studies, Fuchs and her colleagues had found that the gene for Tcf3 is activated in a region of the adult hair follicle called the bulge, where stem cells are expected to be. They also knew from studies in other laboratories that a relative of Tcf3, called Tcf4, appears to be important for the development of the intestine.

... more about:
»Embryonic »Tcf3 »follicle

The researchers reasoned that if Tcf3 plays a role in maintaining adult follicle cells, it would also be present in embryonic skin, which consists mainly of stem cells. When they analyzed the epidermis of embryonic mice, they found that theTcf3 gene was, indeed, active in the embryonic skin stem cells.

The researchers next sought to pinpoint which genes Tcf3 controls. They genetically engineered a mouse in which they could switch the Tcf3 gene on at will in skin cells. They then used DNA microarrays to analyze which genes were affected when Tcf3 was activated. Microarrays, also known as "gene chips," enable scientists to determine the activity of thousands of genes at once.

"When we compared the list of genes that Tcf3 repressed or induced, we found that it was very similar to the genes expressed when the skin is embryonic," said Nguyen. "So, by turning on Tcf3, we were essentially reverting the postnatal skin cells to be more similar to embryonic skin cells. The genetic program induced by Tcf3 is also very similar to that seen in bulge cells, where adult stem cells are thought to reside," she said.

In particular, the researchers found that Tcf3 repressed members of a gene family called PPAR, which themselves produce key transcription factors that promote skin stem cells to differentiate into epidermal and sebaceous gland cells.

The biggest surprise, said Fuchs, came when the researchers analyzed how switching on Tcf3 affected the differentiation of embryonic skin stem cells. They found that activating the gene in mice blocked differentiation of all three types of mature skin cells -- epidermal, sebaceous, and hair follicle. "We've known for some time that Tcf3 can operate with a co-factor called â-catenin and initiate skin stem cells to make hair follicles. But we hadn't realized that Tcf3 could act on its own to keep skin stem cells in an undifferentiated state," Fuchs explained. â-Catenin is stabilized in response to Wnt signaling, which Fuchs' team earlier showed plays a key role in the ability of stem cells to make hair.

Fuchs said that Wnt signaling has been shown to play a role in many different types of stem cells in the body. The discovery that one of â-catenin's partners, Tcf3, can repress genes in the absence of a Wnt signal may be important in understanding how these transcription factors work in stem cells. In further studies, Fuchs and her colleagues plan to study in more detail how Tcf proteins govern stem cell biology.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: Embryonic Tcf3 follicle

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>