Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria beat the heat

01.09.2006
How do some microorganisms manage to exist and even thrive in surroundings ranging from Antarctica to boiling hot springs?

A team of scientists from the Weizmann Institute's Plant Sciences Department, led by Prof. Avigdor Scherz, has found that a switch in just two amino acids (the building blocks of protein) can make a difference between functioning best at moderate temperatures and being adapted to living in extreme heat. The results of their research, which recently appeared in Nature, might have implications for future attempts to adjust crops to differing climate conditions or improve enzyme efficiency in industrial processes.

The team compared two different kinds of bacteria – one found in moderate environments and the other, an intense-heat lover. Both were photosynthetic (that is, using the sun's energy to create sugars for food). The focus of the research was a reaction that takes place in enzymes in the photosynthetic "reaction center" of the bacterial cell. While gradually raising the surrounding temperature, the scientists timed this reaction to see how reaction rates changed as things heated up.

A general rule for enzyme reactions states that as the heat rises, so does the reaction rate. Contrary to this rule, and the scientist's expectations, both reaction rates peaked at a certain point, and remained steady thereafter. For each enzyme, the peak occurred in the bacteria's "comfort zone." Further comparisons of the enzymes, which were nearly identical, turned up differences in just two of the hundreds of amino acids making up the enzyme sequence.

... more about:
»amino acid »heat »temperature

When the scientists replaced these two amino acids in the enzyme adapted to the moderate temperatures with those of the heat-loving enzyme, they observed an increase of about 10 degrees in the average temperature at which the reaction rate peaked. Scherz: "This study shows that enzyme efficiency is tuned to the average temperature of the bacterial habitat, rather than the immediate conditions. This may protect the cells from harmful swings in enzyme activity.

We can envision using this knowledge, for instance, to facilitate enzymatic reactions in different applications, enhance crop production in areas subject to extreme temperature changes or create new resources for biofuel production that will not only provide more biomass per acre, but absorb more of the greenhouse gas, carbon dioxide, as well."

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

Further reports about: amino acid heat temperature

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>