Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist-astronaut sends T-cells into space

01.09.2006
Experiment designed to pinpoint which genes in immune cascade don’t turn on in zero-gee; earlier version was aboard STS-107, destroyed with shuttle Columbia

A former astronaut and researcher at the San Francisco VA Medical Center will be traveling to the Cosmodrome space-launch site at Baikonur, Kazakhstan, this Saturday, Sept. 2, 2006, to prepare a crucial experiment designed to demonstrate how human immune response is suppressed in the weightless environment of space.

Millie Hughes-Fulford, PhD, director of the Laboratory of Cell Growth at SFVAMC, scientific advisor to the Under Secretary of the U.S. Department of Veterans Affairs, and a payload specialist aboard space shuttle flight STS-40 in 1991, will send human T-cells up to the International Space Station aboard ISS Soyuz 13. That science mission, operated by the European Space Agency, is scheduled to launch from Baikonur between September 14 and September 18, 2006.

"We're doing this experiment because many astronauts are immunosuppressed during flight. Their T-cells stop working in microgravity," says Hughes-Fulford, who is also an adjunct professor of medicine at the University of California, San Francisco. "This experiment will tell us for the first time exactly which genes involved in the normal immune response aren't activated in space."

T-cells are white blood cells that play a central role in the body's immune response. They are a target of human immunodeficiency virus (HIV), which suppresses them. When an HIV patient's T-cell count falls below 200, he or she is susceptible to the dangerous infections that are the symptoms of acquired immunodeficiency syndrome (AIDS).

The problem of immunosuppression in microgravity was first noted during the Apollo moon mission series in the 1960s and 1970s, when 15 out of 29 Apollo astronauts developed infections during their missions or soon after landing. Subsequent experiments aboard Skylab and several space shuttle missions, including Fulford's, confirmed that T-cells do not activate properly in microgravity.

"In this experiment, we're looking at why they're not working," says Hughes-Fulford. "Normally, in order for T-cells to be activated, certain genes have to be expressed in a certain order, in what's called a signaling pathway. Aboard the ISS, we hope to find exactly which genes are not being expressed in microgravity."

The experiment will be carried to the International Space Station inside a specially designed incubator called Kubik, which was made to fit precisely under the cosmonaut's seat in the Soyuz spacecraft. Kubik contains a compartment for weightless experiments as well as a centrifuge that can accelerate cells in a range from 0.2 to 2 earth gravities.

On board the space station, European Space Agency astronaut-scientist Thomas Reiter will simultaneously activate T-cells in the weightless compartment and in the centrifuge for four hours. "By activating the cells, he'll be simulating the activation that normally occurs in response to infection," Hughes-Fulford explains. "He'll be setting up the whole cascade that would normally turn on the T-cells. Except we know that some of the genes will not turn on because they're in a weightless environment."

At the end of the experiment, the T-cells will be safely packaged and then sent back to Earth aboard the returning Soyuz craft. In her VA lab in San Francisco, Hughes-Fulford will analyze the results.

"Our expectation is that the T-cells in the centrifuge – basically, under artificial gravity – will be activated normally, and the T-cells in microgravity will not be activated," she predicts. "We will compare them side by side and discover, for the first time, exactly which genes did not turn on in microgravity."

Hughes-Fulford placed an earlier version of the same experiment aboard the space shuttle Columbia on shuttle mission STS-107. At the end of that mission on February 1, 2003, the Columbia broke up upon reentry into Earth's atmosphere, killing all seven crew members and destroying all experiments aboard.

"We cannot go to Mars, or even to the Moon over the long term, without knowing more about why T-cells are not working," says Hughes-Fulford. "When we learn that, we can start looking for possible treatments."

Steve Tokar | EurekAlert!
Further information:
http://www.ucsf.edu/

Further reports about: Astronaut Hughes-Fulford T-cell microgravity weightless

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>