Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist-astronaut sends T-cells into space

01.09.2006
Experiment designed to pinpoint which genes in immune cascade don’t turn on in zero-gee; earlier version was aboard STS-107, destroyed with shuttle Columbia

A former astronaut and researcher at the San Francisco VA Medical Center will be traveling to the Cosmodrome space-launch site at Baikonur, Kazakhstan, this Saturday, Sept. 2, 2006, to prepare a crucial experiment designed to demonstrate how human immune response is suppressed in the weightless environment of space.

Millie Hughes-Fulford, PhD, director of the Laboratory of Cell Growth at SFVAMC, scientific advisor to the Under Secretary of the U.S. Department of Veterans Affairs, and a payload specialist aboard space shuttle flight STS-40 in 1991, will send human T-cells up to the International Space Station aboard ISS Soyuz 13. That science mission, operated by the European Space Agency, is scheduled to launch from Baikonur between September 14 and September 18, 2006.

"We're doing this experiment because many astronauts are immunosuppressed during flight. Their T-cells stop working in microgravity," says Hughes-Fulford, who is also an adjunct professor of medicine at the University of California, San Francisco. "This experiment will tell us for the first time exactly which genes involved in the normal immune response aren't activated in space."

T-cells are white blood cells that play a central role in the body's immune response. They are a target of human immunodeficiency virus (HIV), which suppresses them. When an HIV patient's T-cell count falls below 200, he or she is susceptible to the dangerous infections that are the symptoms of acquired immunodeficiency syndrome (AIDS).

The problem of immunosuppression in microgravity was first noted during the Apollo moon mission series in the 1960s and 1970s, when 15 out of 29 Apollo astronauts developed infections during their missions or soon after landing. Subsequent experiments aboard Skylab and several space shuttle missions, including Fulford's, confirmed that T-cells do not activate properly in microgravity.

"In this experiment, we're looking at why they're not working," says Hughes-Fulford. "Normally, in order for T-cells to be activated, certain genes have to be expressed in a certain order, in what's called a signaling pathway. Aboard the ISS, we hope to find exactly which genes are not being expressed in microgravity."

The experiment will be carried to the International Space Station inside a specially designed incubator called Kubik, which was made to fit precisely under the cosmonaut's seat in the Soyuz spacecraft. Kubik contains a compartment for weightless experiments as well as a centrifuge that can accelerate cells in a range from 0.2 to 2 earth gravities.

On board the space station, European Space Agency astronaut-scientist Thomas Reiter will simultaneously activate T-cells in the weightless compartment and in the centrifuge for four hours. "By activating the cells, he'll be simulating the activation that normally occurs in response to infection," Hughes-Fulford explains. "He'll be setting up the whole cascade that would normally turn on the T-cells. Except we know that some of the genes will not turn on because they're in a weightless environment."

At the end of the experiment, the T-cells will be safely packaged and then sent back to Earth aboard the returning Soyuz craft. In her VA lab in San Francisco, Hughes-Fulford will analyze the results.

"Our expectation is that the T-cells in the centrifuge – basically, under artificial gravity – will be activated normally, and the T-cells in microgravity will not be activated," she predicts. "We will compare them side by side and discover, for the first time, exactly which genes did not turn on in microgravity."

Hughes-Fulford placed an earlier version of the same experiment aboard the space shuttle Columbia on shuttle mission STS-107. At the end of that mission on February 1, 2003, the Columbia broke up upon reentry into Earth's atmosphere, killing all seven crew members and destroying all experiments aboard.

"We cannot go to Mars, or even to the Moon over the long term, without knowing more about why T-cells are not working," says Hughes-Fulford. "When we learn that, we can start looking for possible treatments."

Steve Tokar | EurekAlert!
Further information:
http://www.ucsf.edu/

Further reports about: Astronaut Hughes-Fulford T-cell microgravity weightless

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>