Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers sequence the basal eukaryote Tetrahymena thermophila

30.08.2006
In an effort to improve our understanding of eukaryotic evolution, a team of over 50 researchers led by Jonathan Eisen sequenced the macronuclear genome of the single-celled ciliate Tetrahymena themophila. Published online this week in the open-access journal PLoS Biology, the authors provide insights into the biology of this organism.

T. thermophila is particularly unusual inside. Each cell contains two nuclei: a micronucleus comprising only five chromosomes, and a macronucleus, which has more than 200. The micronucleus contains the DNA necessary for reproduction. The macronucleus controls the cell's other functions. When the cells mate, the micronucleus splinters into fragments, which in turn replicate to form many smaller chromosomes that become the macronucleus.

The researchers carried out shotgun sequencing on purified macronuclei DNA and then reconstructed the genome using computational techniques. They captured an estimated 95% of the genome and conclude it is 105 million base pairs in length and between 185 and 287 total chromosomes. The chromosomes lack centromeres (presumably as they do not undergo meiosis or mitosis), and have only a very small amount of repetitive DNA (much of it is excised from the micronucleus during macronucleus formation). The genome encodes over 27,000 protein-coding genes with some gene families having undergone expansion as exemplified by the more than 300 voltage-gated ion channels that control membrane transport--a critical function for this single-celled organism.

T. thermophila is known to only employ one stop codon (UGA) during protein synthesis; the two unused ones code for glutamine. As UGA can also code for selenocysteine, this is the only organism known so far to translate all 64 codons.

The sequenced genome permitted the authors to investigate plastid acquisition in the alveolates--a group of three related phyla, ciliates, apicomplexans (parasites including malaria causing Plasmodium), and dinoflagellates (oceanic photosynthetic protozoans). Plastids like chloroplasts are organelles descended from free-living cyanobacteria. Many of the genes are typically incorporated into the host nucleus. No evidence of plastids was found in T. thermophila, although they are present in both apicomplexans and dinoflagellates, indicating that plastid acquisition most likely occurred after they had split from the ciliates.

As a basal eukaryote, this genome will enable studies on eukaryotic evolution. The authors aim to next sequence the micronuclear genome.

Natalie Bouaravong | EurekAlert!
Further information:
http://www.plos.org
http://www.plosbiology.org

Further reports about: chromosomes ciliate macronucleus micronucleus thermophila

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>