Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers sequence the basal eukaryote Tetrahymena thermophila

In an effort to improve our understanding of eukaryotic evolution, a team of over 50 researchers led by Jonathan Eisen sequenced the macronuclear genome of the single-celled ciliate Tetrahymena themophila. Published online this week in the open-access journal PLoS Biology, the authors provide insights into the biology of this organism.

T. thermophila is particularly unusual inside. Each cell contains two nuclei: a micronucleus comprising only five chromosomes, and a macronucleus, which has more than 200. The micronucleus contains the DNA necessary for reproduction. The macronucleus controls the cell's other functions. When the cells mate, the micronucleus splinters into fragments, which in turn replicate to form many smaller chromosomes that become the macronucleus.

The researchers carried out shotgun sequencing on purified macronuclei DNA and then reconstructed the genome using computational techniques. They captured an estimated 95% of the genome and conclude it is 105 million base pairs in length and between 185 and 287 total chromosomes. The chromosomes lack centromeres (presumably as they do not undergo meiosis or mitosis), and have only a very small amount of repetitive DNA (much of it is excised from the micronucleus during macronucleus formation). The genome encodes over 27,000 protein-coding genes with some gene families having undergone expansion as exemplified by the more than 300 voltage-gated ion channels that control membrane transport--a critical function for this single-celled organism.

T. thermophila is known to only employ one stop codon (UGA) during protein synthesis; the two unused ones code for glutamine. As UGA can also code for selenocysteine, this is the only organism known so far to translate all 64 codons.

The sequenced genome permitted the authors to investigate plastid acquisition in the alveolates--a group of three related phyla, ciliates, apicomplexans (parasites including malaria causing Plasmodium), and dinoflagellates (oceanic photosynthetic protozoans). Plastids like chloroplasts are organelles descended from free-living cyanobacteria. Many of the genes are typically incorporated into the host nucleus. No evidence of plastids was found in T. thermophila, although they are present in both apicomplexans and dinoflagellates, indicating that plastid acquisition most likely occurred after they had split from the ciliates.

As a basal eukaryote, this genome will enable studies on eukaryotic evolution. The authors aim to next sequence the micronuclear genome.

Natalie Bouaravong | EurekAlert!
Further information:

Further reports about: chromosomes ciliate macronucleus micronucleus thermophila

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>