Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers sequence the basal eukaryote Tetrahymena thermophila

30.08.2006
In an effort to improve our understanding of eukaryotic evolution, a team of over 50 researchers led by Jonathan Eisen sequenced the macronuclear genome of the single-celled ciliate Tetrahymena themophila. Published online this week in the open-access journal PLoS Biology, the authors provide insights into the biology of this organism.

T. thermophila is particularly unusual inside. Each cell contains two nuclei: a micronucleus comprising only five chromosomes, and a macronucleus, which has more than 200. The micronucleus contains the DNA necessary for reproduction. The macronucleus controls the cell's other functions. When the cells mate, the micronucleus splinters into fragments, which in turn replicate to form many smaller chromosomes that become the macronucleus.

The researchers carried out shotgun sequencing on purified macronuclei DNA and then reconstructed the genome using computational techniques. They captured an estimated 95% of the genome and conclude it is 105 million base pairs in length and between 185 and 287 total chromosomes. The chromosomes lack centromeres (presumably as they do not undergo meiosis or mitosis), and have only a very small amount of repetitive DNA (much of it is excised from the micronucleus during macronucleus formation). The genome encodes over 27,000 protein-coding genes with some gene families having undergone expansion as exemplified by the more than 300 voltage-gated ion channels that control membrane transport--a critical function for this single-celled organism.

T. thermophila is known to only employ one stop codon (UGA) during protein synthesis; the two unused ones code for glutamine. As UGA can also code for selenocysteine, this is the only organism known so far to translate all 64 codons.

The sequenced genome permitted the authors to investigate plastid acquisition in the alveolates--a group of three related phyla, ciliates, apicomplexans (parasites including malaria causing Plasmodium), and dinoflagellates (oceanic photosynthetic protozoans). Plastids like chloroplasts are organelles descended from free-living cyanobacteria. Many of the genes are typically incorporated into the host nucleus. No evidence of plastids was found in T. thermophila, although they are present in both apicomplexans and dinoflagellates, indicating that plastid acquisition most likely occurred after they had split from the ciliates.

As a basal eukaryote, this genome will enable studies on eukaryotic evolution. The authors aim to next sequence the micronuclear genome.

Natalie Bouaravong | EurekAlert!
Further information:
http://www.plos.org
http://www.plosbiology.org

Further reports about: chromosomes ciliate macronucleus micronucleus thermophila

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>