Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiff's bees calculation sets industry buzzing

30.08.2006
An ingenious new mathematical procedure based on the behaviour of honey bees is delivering sweet results for industry.

Researchers at Cardiff University's Manufacturing Engineering Centre (MEC) developed the procedure, or algorithm, after observing the "waggle dance" of bees foraging for nectar. The algorithm enables companies to maximise results by changing basic elements of their processes.

When a bee finds a source of nectar, it returns to the hive and performs a dance to show other bees the direction and distance of the flower patch and how plentiful it is. The other workers then decide how many of them will fly off to find the new source, depending on its distance and quality.

The MEC team's Bees Algorithm mimics this behaviour. A computer can be set up to calculate the results of different settings on a manufacturing process. More computing power is then devoted to searching around the most successful settings, in the same way as more bees are sent to the most promising flower patches.

... more about:
»MEC »algorithm

The Algorithm has been shown to cope with up to 3,000 variables and is faster than existing calculations. By entering basic data about all or part of a company, or even just one machine, the MEC team can calculate the best outcome for a wide range of business processes. They have already used the Bees Algorithm to work out the most efficient settings on welding systems and for the design of springs.

The Algorithm was unveiled by PhD student Afshin Ghanbarzadeh and his team at the recent internet-based Innovative Production and Machines Conference hosted by MEC as part of its work with the EU-funded Network of Excellence in this field. The team's research was one of 110 papers presented to 4,000 delegates from 73 countries at the conference, which was held entirely on-line.

MEC director Professor D T Pham OBE said: "We had some highly imaginative ideas at the conference and this is one of the most innovative. This Algorithm can help business work out the most effective way to set up their machines, and save them a lot of money through running their processes as efficiently as possible."

Stephen Rouse | EurekAlert!
Further information:
http://www.cardiff.ac.uk

Further reports about: MEC algorithm

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>