Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolving defenses rapidly suppress male killers

23.08.2006
In the game of survival, anything goes--even the selective extermination of males. Male killing is the preferred strategy for a diverse group of bacteria that infect insects and other arthropods. Aside from its tabloid appeal, male killing offers biologists a platform for investigating genetic conflict--evolutionary battles between competing elements within the same genome.

Male-killing bacteria are passed from mother to offspring, but only males die from infection, suggesting that males harbor genetic elements that allow them to succumb to infection. In keeping with evolutionary theory, these selfish genetic elements, which spread at the expense of the organism, should engender counteracting elements that promote male survival, but until now scant evidence has linked the evolution of host suppressors to selfish elements that mediate male killing. However, in PLoS Biology today, Emily Hornett, Greg Hurst, and colleagues report the first case of total suppression of male killing in a butterfly, Hypolimnas bolina, infected with the wBol1 strain of the male-killing bacterium Wolbachia.

H. bolina is found throughout the Indo-Pacific. Because wBol1 infection kills males in Polynesia but not in Southeast Asia, breeding individuals from each region could reveal genetic elements in the different populations that favor life over death. And because infected females transmit infection directly to offspring, breeding could also introduce wBol1 genes (and infection) onto the butterfly genetic background (a technique called introgression). The authors therefore carried out breeding experiments to test whether male-killing wBol1 taken from Moorea in Polynesia lose that ability against Southeast Asian males with a Thai or Philippine genetic background, and whether benign wBol1 from Thailand or the Philippines turn lethal against males with a Moorean genetic background. They mated infected Moorean females with Thai and Philippine males, and mated infected Thai and Philippine females with Moorean males. Crossing the Moorean and Southeast Asian populations suppressed the male-killing effects of wBol1 from Moorea in just a single generation--in stark contrast to the control crosses (Moorean females mated with Moorean males), which yielded no males at all. But when Moorean wBol1 infection was reintroduced to its native host background--by backcrossing first-generation hybrid Moorean/Southeast Asian females with wild Moorean males--it became male-lethal again.

The researchers concluded that suppression occurs in the embryo, because male offspring of Moorean females crossed with the Southeast Asian males survived even though the mother's genetic profile allows killing. The fact that first-generation hybrids survived at nearly the same ratio as seen in wild Southeast Asian males, they explain, suggests the effect is dominant (requires just one copy of the gene) and is at high frequency in the population. A dominant effect also explains why male killing didn't occur in first-generation crosses between Southeast Asian females and Moorean males--the suppressor elements had not been segregated out of the population yet. Through simulations, the researchers show that the suppressor could spread through the population in just 100 generations, suggesting that male killing could disappear relatively quickly after a suppressor mutation occurs. Thus, genetic conflict between killing abettors and suppressors may be far more widespread than once thought, but has simply eluded detection. Given the diversity of species afflicted by male-killing bacteria, researchers will have plenty of options for testing this possibility.

Natalie Bouaravong | EurekAlert!
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>