Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research pinpoints West Nile virus antibody binding site

16.08.2006
Researchers have learned the precise location where an antibody binds to the West Nile virus, and they have suggested a mechanism for how this antibody neutralizes the virus to prevent infection.

"Science doesn't yet fully understand exactly how neutralizing antibodies work," said Michael Rossmann, the Hanley Distinguished Professor of Biological Sciences in Purdue's College of Science. "This work has shown precisely where the antibody binds to the virus, and we now have a theory for how it interacts with the virus to disarm it. Perhaps we are starting to understand why this particular antibody can inhibit the infectivity of the virus, which is important to understand if a vaccine is going to be developed."

Purdue worked with researchers from the Washington University School of Medicine in St. Louis.

West Nile belongs to a family of viruses known as flaviviruses, which includes a number of dangerous insect-borne disease-causing viruses. The antibody attaches to a protein called an E protein, for envelope protein, which makes up the virus's outer shell. There are 180 copies of E proteins symmetrically arranged in 60 sets of three, forming a geometric shape called an icosahedron, which is made up of triangular facets.

The researchers, however, were surprised to discover that this antibody recognizes only two of the E proteins in each set of three, said Bärbel Kaufmann, a postdoctoral research associate working in the Rossmann lab.

"This finding was very unusual," she said. "If the E proteins really are the same, why doesn't the antibody bind to all of the E proteins? This kind of asymmetry, where you have two proteins binding and one not binding, has not been seen before."

The researchers theorize that, although chemically identical, these E proteins exist in different environments relative to each other and might, therefore, have slightly different structures, said Richard J. Kuhn, a professor and head of Purdue's Department of Biological Sciences.

The findings were detailed in a research paper appearing last week in Proceedings of the National Academy of Sciences.

Researchers know that when the virus infects a host cell, it interacts with the cell membrane in such a way that it is swallowed up by the membrane and enters the cell as an "endocytotic particle." The Purdue researchers have now developed a theory for the mechanism behind the interaction and will test it in further research, Rossmann said.

Once the virus penetrates the host cell, the viral membrane fuses with an internal membrane in the cell. This process causes the virus particle to empty its contents inside the cell and leads to infection.

To study how the antibodies and E proteins attach, Kaufmann first separated the antibody's tail end from its two grasping, fingerlike structures called "antigen binding fragments."

"We don't want to handle the whole molecule, so we cut off these antigen binding domains and then combined them with the virus, forming the virus-antibody complex," Kaufmann said.

The researchers then used an electron microscope and a process called cryoelectron microscopy to take detailed pictures of this complex. Then they computed a three-dimensional model based on these pictures showing the outstretched antigen binding fragments attached to the virus particle.

The E proteins in one triangular segment of the icosahedron are not all positioned the same way relative to each other and to the various "axes" that define the icosahedron. This difference in position appears to be crucial in the binding process.

The antibody is called a monoclonal antibody because it recognizes only a single binding site on the E protein. Each E protein has three "domains," or well-defined, folded segments. The third domain has a structure commonly seen in molecules that attach to proteins to perform a specific function in cells. The grasping antibody segment used in the study attaches only to the third domain of the E proteins.

"One of the three E proteins in the triangular segment fails to be recognized by the antibody because its third domain crowds together with other E proteins on the viral surface," Kuhn said.

Researchers at the Washington University School of Medicine have shown through experiments that the antibody does not prevent the virus from attaching to human cells, so it is likely that the antibody works by preventing the fusion step from occurring.

Purdue researchers had previously theorized that before the virus fuses, the E protein undergoes dramatic structural repositioning and that the antibodies might inhibit those changes, preventing infection.

"We have a model for understanding how this inhibition process may work," Rossmann said. "We think it's likely that the antibody blocks the positional changes needed for the E protein before fusion, in effect preventing the virus from infecting the cell by jamming the mechanism."

After infection, it takes a few days to a few weeks for the body to make the antibodies, or enough of them to fend off infection.

"If the virus is fast enough, you become sick," Kuhn said. "But if you were vaccinated, you might already have enough antibodies to prevent infection, and that's why these findings are ultimately important. If we understand the mechanism of neutralization, then we might be able to design more effective vaccines."

West Nile virus causes a potentially fatal illness and has infected thousands of people in the United States over the past five years, killing more than 700 people in that time frame.

The research is funded by the National Institutes of Health. Future work could focus on confirming the theoretical model for the antibody's neutralizing mechanism.

"If our theory is right and the antibody binding blocks the E protein's transformation so that fusion can't take place, then we should be able to capture the intermediate stages of this rearrangement of the E protein prior to fusion," Kaufmann said.

The paper was authored by Kaufmann, Purdue electron microscopist Paul R. Chipman, Purdue associate research scientist Wei Zhang, Kuhn and Rossmann, and three researchers from the Washington University School of Medicine: Grant E. Nybakken, a graduate student in the Department of Pathology and Immunology; Michael S. Diamond, an assistant professor in the departments of Medicine, Molecular Microbiology, Pathology and Immunology; and Daved H. Fremont, an associate professor of pathology and immunology, biochemistry and molecular physics.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Michael Rossmann, (765) 494-4911, mgr@indiana.bio.purdue.edu

Richard J. Kuhn, (765) 494-1164, kuhnr@purdue.edu

Barbel Kaufmann, bkaufman@bilbo.bio.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>