Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research pinpoints West Nile virus antibody binding site

16.08.2006
Researchers have learned the precise location where an antibody binds to the West Nile virus, and they have suggested a mechanism for how this antibody neutralizes the virus to prevent infection.

"Science doesn't yet fully understand exactly how neutralizing antibodies work," said Michael Rossmann, the Hanley Distinguished Professor of Biological Sciences in Purdue's College of Science. "This work has shown precisely where the antibody binds to the virus, and we now have a theory for how it interacts with the virus to disarm it. Perhaps we are starting to understand why this particular antibody can inhibit the infectivity of the virus, which is important to understand if a vaccine is going to be developed."

Purdue worked with researchers from the Washington University School of Medicine in St. Louis.

West Nile belongs to a family of viruses known as flaviviruses, which includes a number of dangerous insect-borne disease-causing viruses. The antibody attaches to a protein called an E protein, for envelope protein, which makes up the virus's outer shell. There are 180 copies of E proteins symmetrically arranged in 60 sets of three, forming a geometric shape called an icosahedron, which is made up of triangular facets.

The researchers, however, were surprised to discover that this antibody recognizes only two of the E proteins in each set of three, said Bärbel Kaufmann, a postdoctoral research associate working in the Rossmann lab.

"This finding was very unusual," she said. "If the E proteins really are the same, why doesn't the antibody bind to all of the E proteins? This kind of asymmetry, where you have two proteins binding and one not binding, has not been seen before."

The researchers theorize that, although chemically identical, these E proteins exist in different environments relative to each other and might, therefore, have slightly different structures, said Richard J. Kuhn, a professor and head of Purdue's Department of Biological Sciences.

The findings were detailed in a research paper appearing last week in Proceedings of the National Academy of Sciences.

Researchers know that when the virus infects a host cell, it interacts with the cell membrane in such a way that it is swallowed up by the membrane and enters the cell as an "endocytotic particle." The Purdue researchers have now developed a theory for the mechanism behind the interaction and will test it in further research, Rossmann said.

Once the virus penetrates the host cell, the viral membrane fuses with an internal membrane in the cell. This process causes the virus particle to empty its contents inside the cell and leads to infection.

To study how the antibodies and E proteins attach, Kaufmann first separated the antibody's tail end from its two grasping, fingerlike structures called "antigen binding fragments."

"We don't want to handle the whole molecule, so we cut off these antigen binding domains and then combined them with the virus, forming the virus-antibody complex," Kaufmann said.

The researchers then used an electron microscope and a process called cryoelectron microscopy to take detailed pictures of this complex. Then they computed a three-dimensional model based on these pictures showing the outstretched antigen binding fragments attached to the virus particle.

The E proteins in one triangular segment of the icosahedron are not all positioned the same way relative to each other and to the various "axes" that define the icosahedron. This difference in position appears to be crucial in the binding process.

The antibody is called a monoclonal antibody because it recognizes only a single binding site on the E protein. Each E protein has three "domains," or well-defined, folded segments. The third domain has a structure commonly seen in molecules that attach to proteins to perform a specific function in cells. The grasping antibody segment used in the study attaches only to the third domain of the E proteins.

"One of the three E proteins in the triangular segment fails to be recognized by the antibody because its third domain crowds together with other E proteins on the viral surface," Kuhn said.

Researchers at the Washington University School of Medicine have shown through experiments that the antibody does not prevent the virus from attaching to human cells, so it is likely that the antibody works by preventing the fusion step from occurring.

Purdue researchers had previously theorized that before the virus fuses, the E protein undergoes dramatic structural repositioning and that the antibodies might inhibit those changes, preventing infection.

"We have a model for understanding how this inhibition process may work," Rossmann said. "We think it's likely that the antibody blocks the positional changes needed for the E protein before fusion, in effect preventing the virus from infecting the cell by jamming the mechanism."

After infection, it takes a few days to a few weeks for the body to make the antibodies, or enough of them to fend off infection.

"If the virus is fast enough, you become sick," Kuhn said. "But if you were vaccinated, you might already have enough antibodies to prevent infection, and that's why these findings are ultimately important. If we understand the mechanism of neutralization, then we might be able to design more effective vaccines."

West Nile virus causes a potentially fatal illness and has infected thousands of people in the United States over the past five years, killing more than 700 people in that time frame.

The research is funded by the National Institutes of Health. Future work could focus on confirming the theoretical model for the antibody's neutralizing mechanism.

"If our theory is right and the antibody binding blocks the E protein's transformation so that fusion can't take place, then we should be able to capture the intermediate stages of this rearrangement of the E protein prior to fusion," Kaufmann said.

The paper was authored by Kaufmann, Purdue electron microscopist Paul R. Chipman, Purdue associate research scientist Wei Zhang, Kuhn and Rossmann, and three researchers from the Washington University School of Medicine: Grant E. Nybakken, a graduate student in the Department of Pathology and Immunology; Michael S. Diamond, an assistant professor in the departments of Medicine, Molecular Microbiology, Pathology and Immunology; and Daved H. Fremont, an associate professor of pathology and immunology, biochemistry and molecular physics.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Michael Rossmann, (765) 494-4911, mgr@indiana.bio.purdue.edu

Richard J. Kuhn, (765) 494-1164, kuhnr@purdue.edu

Barbel Kaufmann, bkaufman@bilbo.bio.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>