Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel genomic disorders

15.08.2006
NimbleGen's high-resolution array CGH pinpoints location of genomic aberrations causing mental retardation

Researchers at the University of Washington and The Howard Hughes Medical Institute have discovered several new genetic causes of mental retardation, according to a study published online August 13 in Nature Genetics. One form of retardation, caused by a large deletion that spans six genes on chromosome 17, has characteristic facial, behavioral, and other physical features that can aid clinicians in identifying similar syndromes.

Working with colleagues in the UK and US, the researchers screened 290 children with mental retardation and identified several abnormal genetic events. The researchers were able to pinpoint the region of the specific deletion using NimbleGen's high-resolution CGH microarrays. "The ability of NimbleGen to rapidly generate custom-designed, high-density oligo arrays targeted to the specific chromosomal regions we were interested in provided us the key data in our study," stated Dr. Andrew Sharp, Senior Fellow and Rosetta Fellow of the University of Washington and first author on the paper. "Having these tools in hand gave us, in a single experiment, what would otherwise have taken months of work using conventional methods, and allowed unprecedented insight into the underlying biology and mechanism of genomic disease."

The deletion on chromosome 17 was seen in multiple children. Based on current data, this deletion potentially accounts for ~1% of cases of mental retardation, making it one of the most common genetic causes of mental retardation. The deletion, encompassing several genes, is associated with a region of DNA that is commonly reversed (or inverted) in one in five people of European descent. Intriguingly, this deletion seems to occur preferentially among children of individuals who carry the inversion.

The research was based on the hypothesis that the genome contains hotspots that are prone to instability and thus play a key role in the occurrence of genomic disorders. These hotspots are flanked on each side by large, repetitive regions of DNA, termed "segmental duplications". It is because of the repetitive nature of these regions that, during replication, the genome can become "confused" and duplicate, reverse, or delete itself within these regions.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu
http://www.NimbleGen.com

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>