Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel genomic disorders

15.08.2006
NimbleGen's high-resolution array CGH pinpoints location of genomic aberrations causing mental retardation

Researchers at the University of Washington and The Howard Hughes Medical Institute have discovered several new genetic causes of mental retardation, according to a study published online August 13 in Nature Genetics. One form of retardation, caused by a large deletion that spans six genes on chromosome 17, has characteristic facial, behavioral, and other physical features that can aid clinicians in identifying similar syndromes.

Working with colleagues in the UK and US, the researchers screened 290 children with mental retardation and identified several abnormal genetic events. The researchers were able to pinpoint the region of the specific deletion using NimbleGen's high-resolution CGH microarrays. "The ability of NimbleGen to rapidly generate custom-designed, high-density oligo arrays targeted to the specific chromosomal regions we were interested in provided us the key data in our study," stated Dr. Andrew Sharp, Senior Fellow and Rosetta Fellow of the University of Washington and first author on the paper. "Having these tools in hand gave us, in a single experiment, what would otherwise have taken months of work using conventional methods, and allowed unprecedented insight into the underlying biology and mechanism of genomic disease."

The deletion on chromosome 17 was seen in multiple children. Based on current data, this deletion potentially accounts for ~1% of cases of mental retardation, making it one of the most common genetic causes of mental retardation. The deletion, encompassing several genes, is associated with a region of DNA that is commonly reversed (or inverted) in one in five people of European descent. Intriguingly, this deletion seems to occur preferentially among children of individuals who carry the inversion.

The research was based on the hypothesis that the genome contains hotspots that are prone to instability and thus play a key role in the occurrence of genomic disorders. These hotspots are flanked on each side by large, repetitive regions of DNA, termed "segmental duplications". It is because of the repetitive nature of these regions that, during replication, the genome can become "confused" and duplicate, reverse, or delete itself within these regions.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu
http://www.NimbleGen.com

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>