Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish Show Advantages in Assessing Human Cancer Cell-Induced Angiogenesis in vivo

10.08.2006
Researchers from Phylonix Pharmaceuticals, Inc., today announced results that demonstrates zebrafish is an efficient and effective animal model for assessing human cancer cells at various stages of tumorigenesis.

Results were published online today in the advanced online issue of the journal, Angiogenesis. Melanoma, colorectal and pancreatic cell lines proliferated, migrated, formed masses and stimulated angiogenesis in zebrafish. Cells were injected into various sites in zebrafish, including the yolk sac, the brain, and the circulation.

Significant findings of this research include: human cancer cells were not rejected by zebrafish embryos, a major problem with other animal models; new zebrafish angiogenic vessels formed in and around human cancer cell masses, similar to the process of cancer progression in humans; and zebrafish cells incorporated into human cell masses, indicating that cell signaling mechanisms are highly conserved.

The research demonstrates numerous advantages of using zebrafish as an alternative model for cancer research, such as: zebrafish are small, inexpensive to maintain, easily bred in large numbers, require as few as 50 cells for transplant, permit in vivo visualization of cell migration, mass formation and interaction between human cancer and zebrafish cells in the transparent animal, and require small amount of drug per experiment, µM vs mM.

Since chemicals can be delivered directly in the fish water and proteins can be injected, assessment of cytotoxic, apoptotic or anti-angiogenic effects of potential drug candidates, singly or in combination, is straightforward.

“Our research demonstrates that zebrafish provide important advantages as a research model, which will be beneficial for advancing cancer research and drug screening,” said Patricia McGrath, Phylonix’ President and Chief Executive Officer. “Although the mouse has been the model of choice for human cancer cell research and drug screening for more than 25 years, the time required to perform xenotransplant studies in mice ranges from several weeks to months, and it has been difficult to generate mouse models that exhibit tumor metastasis,” she continued.

A striking result of this research was formation of new angiogenic vessels at sites surrounding tumor mass formation which was confirmed by whole mount immunostaining and histology; activated zebrafish endothelial cells were embedded in the cancer cell masses.

The research, conducted by Maryann Haldi, Christopher Ton, Wen Lin Seng and Patricia McGrath, was supported by a grant from the National Institute for Diabetes and Digestive and Kidney Disease (DK074179).

For more information about this research or to request copies of the article and related images, please contact Phylonix at 617-444-6700, or visit www.phylonix.com.

About Phylonix

Phylonix, based in Cambridge, Massachusetts, is a privately owned biopharmaceutical research and services company that develops and markets zebrafish-based assays, eZ-Screens, used to assess safety and efficacy of drug candidates. The company owns several issued United States patents on critical research tools, including methods for drug screening in zebrafish using microtiter plates (6,299,858), transplantation of human cells in zebrafish (6,761,876), and methods for assessing drug candidates for angiogenesis and vasculargenesis in zebrafish (7,041,276). Phylonix’ drug candidate screening technologies and services are used by dozens of biotechnology and pharmaceutical customers world-wide.

James G. McManus | EurekAlert!
Further information:
http://www.phylonix.com

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>