Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify gene involved in stem cell self-renewal in planaria

08.08.2006
No matter how you slice it, the freshwater planarian possesses an amazing ability to regenerate lost body parts. Chop one into pieces, and each piece can grow into a complete planarian. The flatworm relies upon a population of stem cells to accomplish this remarkable feat; recent work sheds light on how planarians maintain these stem cells throughout their lives.

In a paper to appear in the August issue of the journal Developmental Cell, scientists show that a member of the Bruno-like family of RNA binding proteins – produced by a gene found in both planarians and humans – plays a vital role in maintaining the stem cell population in the planarian Schmidtea mediterranea. The work could lead to a better understanding of the fundamental mechanisms by which stem cells are regulated; such basic understanding is required for the successful therapeutic application of stem cells in humans.

"One of the defining characteristics of stem cells is their ability to self-renew – that is, to make more stem cells in addition to differentiating into multiple cell types," said Phillip A. Newmark, a professor of cell and developmental biology at the University of Illinois at Urbana-Champaign and corresponding author of the paper. "We found that in the absence of this protein, the stem cells could respond to wound stimuli, proliferate, and differentiate, but they were unable to self-renew. As a result, the regeneration process failed and the animals died."

Using a technique called RNA interference, Illinois graduate student Tingxia Guo and Newmark first eliminated most of the Bruno-like protein (Bruli) from a number of planarians. Then they amputated a small piece from each flatworm. In the usual manner, the planarian stem cells migrated to the site of the wound, sensed what was missing and began rebuilding. Regeneration ceased, however, when the stem cell population became depleted.

"Had Bruli protein been present, the regeneration process would have continued to completion," Newmark said. "What may be happening is that when this protein is eliminated, RNAs that are supposed to be turned off (that is, not made into proteins) are now turned on and made into proteins. Those proteins may then cause the stem cells to differentiate, instead of also producing new stem cells to maintain the population."

While there is still much to be learned about stem cell self-renewal, the researchers' results suggest that Bruli protein is required for stem cell maintenance in planarians.

"The next steps are to see if the gene that makes this protein in planarians plays a similar role in stem cells in other organisms and to identify possible RNA targets of this protein," Newmark said.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>