Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify gene involved in stem cell self-renewal in planaria

08.08.2006
No matter how you slice it, the freshwater planarian possesses an amazing ability to regenerate lost body parts. Chop one into pieces, and each piece can grow into a complete planarian. The flatworm relies upon a population of stem cells to accomplish this remarkable feat; recent work sheds light on how planarians maintain these stem cells throughout their lives.

In a paper to appear in the August issue of the journal Developmental Cell, scientists show that a member of the Bruno-like family of RNA binding proteins – produced by a gene found in both planarians and humans – plays a vital role in maintaining the stem cell population in the planarian Schmidtea mediterranea. The work could lead to a better understanding of the fundamental mechanisms by which stem cells are regulated; such basic understanding is required for the successful therapeutic application of stem cells in humans.

"One of the defining characteristics of stem cells is their ability to self-renew – that is, to make more stem cells in addition to differentiating into multiple cell types," said Phillip A. Newmark, a professor of cell and developmental biology at the University of Illinois at Urbana-Champaign and corresponding author of the paper. "We found that in the absence of this protein, the stem cells could respond to wound stimuli, proliferate, and differentiate, but they were unable to self-renew. As a result, the regeneration process failed and the animals died."

Using a technique called RNA interference, Illinois graduate student Tingxia Guo and Newmark first eliminated most of the Bruno-like protein (Bruli) from a number of planarians. Then they amputated a small piece from each flatworm. In the usual manner, the planarian stem cells migrated to the site of the wound, sensed what was missing and began rebuilding. Regeneration ceased, however, when the stem cell population became depleted.

"Had Bruli protein been present, the regeneration process would have continued to completion," Newmark said. "What may be happening is that when this protein is eliminated, RNAs that are supposed to be turned off (that is, not made into proteins) are now turned on and made into proteins. Those proteins may then cause the stem cells to differentiate, instead of also producing new stem cells to maintain the population."

While there is still much to be learned about stem cell self-renewal, the researchers' results suggest that Bruli protein is required for stem cell maintenance in planarians.

"The next steps are to see if the gene that makes this protein in planarians plays a similar role in stem cells in other organisms and to identify possible RNA targets of this protein," Newmark said.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>