Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic model for Parkinson's disease

28.07.2006
Researchers at the Karolinska Institute in Sweden are homing in on mechanisms that may explain one set of causes for Parkinson's disease. In mice they have mimicked disturbances of mitochondria thought to be one cause of disease. By genetic means the disturbance of mitochondria - the energy factories of cells - were directed to those nerve cells that produce the transmitter substance dopamine and that die in Parkinson's disease.

”The course of disease in these mice is strikingly similar to human disease”, says Dr. Lars Olson.

In the mouse model generated by the research team, a gene called TFAM is automatically deleted from the genome in dopamine nerve cells only. Without TFAM, mitochondria cannot function normally. The so called respiratory chain is compromised and energy production decreases severely in the dopamine cells.

The new mice are born healthy from healthy but genetically modified parents and will develop spontaneous disease. Previous studies in the field have been based on researchers delivering neurotoxic substances to kill the dopamine neurons. In the new mice, however, mice develop disease slowly in adulthood, like humans with Parkinson's disease, which may facilitate research aimed at finding novel medical treatments and other therapies.

”We see that the dopamine producing nerve cells in the brain stem slowly degenerate”, says Dr. Nils-Göran Larsson. ”In the microscope we can see that the mitochondria are swollen and that aggregates of a protein, probably alpha-synuclein starts to accumulate in the nerve cell bodies. Inclusions of alpha-synuclein-rich so called Lewy bodies is typical for the human disease.”

The causes of Parkinson's disease have long remained a mystery. Genes and environment are both implicated, but recently there has been an increased focus on the roles of genetic factors. It has been found that mutations in a number of genes can lead directly to disease, while other mutations may be susceptibility factors, so that carriers have an increased risk of becoming ill.

A common denominator for some of the implicated genes is their suggested role for the normal functioning of mitochondria.

”Like patients, the mice can be treated with levo-Dopa, a precursor of the lost substance dopamine”, says Dr. Nils-Göran Larsson. ”The course of the disease, as well as the brain changes in this mouse are more similar to Parkinson's disease than most other models. This supports the notion that genetic risk factors are important.”

”Like in patients, the dopamine nerve cells in the new mouse model die in a specific order”, says Dr. Lars Olson. ”We hope the mouse will help us understand why certain dopamine nerve cells are more sensitive than others, so that we can develop drugs that delay, ore even stop the nerve cell death.”

The project, which is a collaboration between Dr. Nils-Göran Larsson's and Dr. Lars Olson's teams and in which Dr. Staffan Cullheim's team has contributed with electron microscopical analysis, is being published this week as an Early edition in Proceedings of the National Academy of Sciences. Collaborations regarding the new Parkinson mouse are also ongoing with Dr. Barry Hoffer's team at NIDA, NIH.

Katarina Sternudd | alfa
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>