Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover a genetic code for organizing DNA within the nucleus

20.07.2006
DNA – the long, thin molecule that carries our hereditary material – is compressed around protein scaffolding in the cell nucleus into tiny spheres called nucleosomes. The bead-like nucleosomes are strung along the entire chromosome, which is itself folded and packaged to fit into the nucleus. What determines how, when and where a nucleosome will be positioned along the DNA sequence? Dr. Eran Segal and research student Yair Field of the Computer Science and Applied Mathematics Department at the Weizmann Institute of Science have succeeded, together with colleagues from Northwestern University in Chicago, in cracking the genetic code that sets the rules for where on the DNA strand the nucleosomes will be situated. Their findings appeared today in Nature.

The precise location of the nucleosomes along the DNA is known to play an important role in the cell's day to day function, since access to DNA wrapped in a nucleosome is blocked for many proteins, including those responsible for some of life's most basic processes. Among these barred proteins are factors that initiate DNA replication, transcription (the transfer of genetic information from DNA to RNA) and DNA repair. Thus, the positioning of nucleosomes defines the segments in which these processes can and can't take place. These limitations are considerable: Most of the DNA is packaged into nucleosomes. A single nucleosome contains about 150 genetic bases (the "letters" that make up a genetic sequence), while the free area between neighboring nucleosomes is only about 20 bases long. It is in these nucleosome-free regions that processes such as transcription can be initiated.

For many years, scientists have been unable to agree whether the placement of nucleosomes in live cells is controlled by the genetic sequence itself. Segal and his colleagues managed to prove that the DNA sequence indeed encodes "zoning" information on where to place nucleosomes. They also characterized this code and then, using the DNA sequence alone, were able to accurately predict a large number of nucleosome positions in yeast cells.

Segal and his colleagues accomplished this by examining around 200 different nucleosome sites on the DNA and asking whether their sequences have something in common. Mathematical analysis revealed similarities between the nucleosome-bound sequences and eventually uncovered a specific "code word." This "code word" consists of a periodic signal that appears every 10 bases on the sequence. The regular repetition of this signal helps the DNA segment to bend sharply into the spherical shape required to form a nucleosome. To identify this nucleosome positioning code, the research team used probabilistic models to characterize the sequences bound by nucleosomes, and they then developed a computer algorithm to predict the encoded organization of nucleosomes along an entire chromosome.

The team's findings provided insight into another mystery that has long been puzzling molecular biologists: How do cells direct transcription factors to their intended sites on the DNA, as opposed to the many similar but functionally irrelevant sites along the genomic sequence? The short binding sites themselves do not contain enough information for the transcription factors to discern between them. The scientists showed that basic information on the functional relevance of a binding site is at least partially encoded in the nucleosome positioning code: The intended sites are found in nucleosome-free segments, thereby allowing them to be accessed by the various transcription factors. In contrast, spurious binding sites with identical structures that could potentially sidetrack transcription factors are conveniently situated in segments that form nucleosomes, and are thus mostly inaccessible.

Since the proteins that form the core of the nucleosome are among the most evolutionarily conserved in nature, the scientists believe the genetic code they identified should also be conserved in many organisms, including humans. Several diseases, such as cancer, are typically accompanied or caused by mutations in the DNA and the way it organizes into chromosomes. Such mutational processes may be influenced by the relative accessibility of the DNA to various proteins and by the organization of the DNA in the cell nucleus. Therefore, the scientists believe that the nucleosome positioning code they discovered may aid scientists in the future in understanding the mechanisms underlying many diseases.

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>