Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Purple Corn and RNA Break Genetic Laws

20.07.2006
A newly cloned gene in corn will help explain how unusual interactions between a parent's genes can have lasting effects in future generations. The finding has implications for breeding better crop plants and unraveling complex genetic diseases.

The new research indicates that an additional molecule, DNA's little cousin RNA, is needed for the intriguing gene interactions known as paramutation. Paramutation doesn't follow the laws of classical Mendelian genetics.

"Paramutation is this incredibly interesting, tantalizing violation of Mendel's laws," said senior author Vicki L. Chandler, director of BIO5 Institute at The University of Arizona in Tucson. "It's been known to exist for 50 years, but nobody understood the underlying mechanism."

Classical genetics states that when offspring inherit genes from their parents, the genes function in the children the same way the genes functioned in the parent.

When paramutation occurs, one version of the parent's gene orders the other to act differently in the next generation. The gene functions differently in the offspring, even though its DNA is identical to the parent's version.

It happens even when the kids don't inherit the bossy version of the gene. The phenomenon was originally found in corn and has since been found in other organisms, including mammals.

"In previous work we identified a gene that is absolutely required for paramutation to happen," said Chandler, a UA Regents' Professor of plant sciences and of molecular and cellular biology. "Now we've figured out what that gene does, and it's exciting because it suggests a mechanism for how this process works."

Chandler's work is the first to point out that an enzyme known as an RNA-dependent RNA polymerase is needed for paramutation.

Corn, also known as maize, is the most economically important crop plant in the United States. Better understanding of plant genetics will help breeders develop improved strains of crops.

Understanding paramutation and similar non-Mendelian genetic phenomena also has implications for human health. For some human diseases, a genetic component is known to exist but has been hard to decipher. Non-Mendelian effects may be at work in those diseases.

"Gene interactions in parents that change the way a gene functions in the progeny are going to contribute to very unexpected inheritance patterns that complicate identifying genes involved in human disease," said Chandler, who holds the Carl E. and Patricia Weiler Endowed Chair for Excellence in Agriculture and Life Sciences at UA.

Chandler and her colleagues will publish their new findings in the July 20 issue of the journal Nature. The article's title and a complete list of authors and their affiliations is at the end of the release. The National Science Foundation, the National Institutes of Health and the Howard Hughes Medical Institute funded the research.

The Chandler lab investigated a gene called b1 that controls whether a corn plant has a purple or green stalk. A plant has two copies of each gene, one from each parent.

One version, or allele, of the gene codes for a purple pigment. Generally, plants need just one copy of that allele, known as B-Intense or B-I, to be the color purple.

But whether a B-I-carrying plant is actually purple depends on the company B-I keeps. If the plant's other b1 allele is the "paramutagenic" B' variety, the B-I allele is silenced. The resulting plant is mostly green.

And although B-I's DNA doesn't change, in subsequent generations the silenced B-I allele behaves as if it had mutated -- the B-I-carrying progeny are mostly green, rather than being deep purple.

"It cannot revert -- it's a one-way street," said co-author Lyudmila Sidorenko, an assistant research scientist in Chandler's lab.

Chandler and her colleagues wanted to know how the B' allele changed B-I's behavior without actually changing B-I's DNA. They already knew that paramutation required normal versions of the mediator of paramutation 1 (mop1) gene.

Plants with normal mop1 genes and one B-I allele and one B' allele turned out as expected -- mostly green.

However, B-I/B' plants with two mutant mop1 genes were deep purple -- they looked as if the purple-suppressing B' allele wasn't present. This demonstrated that normal mop1 was necessary for the B' allele to silence B-I.

The scientists mapped mop1's location on one of the corn's chromosomes and cloned the gene. The mop1 gene makes an enzyme called RNA-dependent RNA polymerase (RDRP). Mutant mop1 genes can't produce the enzyme.

The team had previously suspected a role for RNA, best known for mediating the transfer of information from DNA to a cell's protein-making machinery. This new result provides strong evidence that RNA is indeed involved.

The researchers hypothesize that mop1 amplifies the RNA signals coming from a key region of the B-I and B' allele. That key region is a particular DNA sequence that is repeated seven times.

The researchers hypothesize that those many RNA molecules silence the B-I and B' alleles.

Chandler said, "It's exciting because it's a new role for RNA."

The researchers' next step is figuring out exactly how RNA suppresses the function of the b1 gene and how those cease-and-desist orders are faithfully transmitted to progeny in the absence of changes in the DNA.

Chandler's co-authors on the article, "An RNA-dependent RNA polymerase is required for paramutation in maize," are Mary Alleman of Duquesne University in Pittsburgh; Lyudmila Sidorenko, Karen McGinnis and Kristin Sikkink of UA; Vishwas Seshadri, now of Biologics Development Center Developing Businesses in Andhra Pradesh, India; Jane E. Dorweiler, now of Marquette University in Milwaukee; and Joshua White, now of the University of Texas at Austin.

Vicki Chandler | University of Arizona
Further information:
http://www.arizona.edu
http://www.bio5.org/
http://ag.arizona.edu/pls/faculty/chandler.html/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>