Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify protein with a crucial role in cell death

14.07.2006
Ageing, and the processes of deterioration that go with it, are largely attributable to cells that die off in a controlled manner.

Therefore, gaining better understanding of this controlled cell death is very important in the fight against deterioration diseases like dementia. In this light, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the K.U.Leuven, in collaboration with researchers from the Dulbecco-Telethon Institute hosted by the Veneto Institute of Molecular Medicine in Padua (Italy), have now discovered the function of the PARL protein. By studying mice that are unable to produce PARL, the researchers have discovered the significance of this protein in controlled cell death. An important step toward a good understanding of the ageing processes and of diseases like Parkinson’s disease.

The cells’ energy suppliers

Every living thing is composed of cells. There are a number of different cell types (brain cells, for example), each with its own particular function. To be able to perform their work, cells need energy. And this is what the mitochondria - which convert oxygen into the necessary energy - are responsible for. Given this vital function, scientists have suspected that the inner workings of a cell depend largely on how the mitochondria function. Therefore, it has been suspected that poorly functioning mitochondria can, among other things, lead to a disturbance in brain cells and thus contribute to Parkinson’s disease.

A noble stranger...

This starting assumption brought two top researchers together: Bart De Strooper, who has extensive experience in Alzheimer research and is thus also interested in the causes of Parkinson’s disease, and Luca Scorrano, who specializes in the functioning and effect of mitochondria. They set out to study PARL, a protein thought to interact with Presenilin, one of the major players in Alzheimer’s disease. Previous research had already indicated that the link between PARL and Presenilin is negligible. It was understood that PARL is important to the cell’s mitochondria, but the protein’s particular function has remained unknown for a long time.

‘Knock-out’ mice

To obtain insight into PARL’s function, the researchers used mice - called ‘knock-out’ mice - that were no longer able to produce this protein. These mice deteriorated very rapidly - losing muscular strength after only 4 weeks, which greatly reduced their capacity for breathing - and, after 8 to 12 weeks, they died. Thus, a lack of PARL leads to weakening of (muscle) cells, a phenomenon that also occurs in the normal ageing process. This result spurred the researchers on to find out the function of PARL.

Controlled cell death

During our lifetime, cells die off in a controlled manner - a process called apoptosis. In addition to supplying energy, mitochondria also ensure the integration and amplification of apoptosis signaling in the cell. From the research of De Strooper and Scorrano, it turns out that PARL is a key to initiating apoptosis in the mitochondria. Although the mitochondria of the knock-out mice have a normal development and are able to convert oxygen into energy, they have apparently lost their protection against apoptosis, and so the cells die off more quickly. Therefore, PARL plays a crucial role in the cells’ dying off process and, consequently, probably also in the origin of diseases of ageing, like Parkinson’s disease.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>