Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Two-Stage Amplifier

Coupling two enzymatic reactions: sensitive detection for immunological ELISA tests

Bioanalytical and diagnostic test methods are often based on the recognition of biomolecules by other biomolecules. However, biochemical events such as these are not directly detectable and must first be converted into physical signals, for example an electrical or optical signal. Since transient and minute amounts of substance are usually involved, which must be detected in very small test volumes, an effective "amplifier" must be employed. Enzyme reactions are a good choice as amplifiers and signal transformers: a single enzyme molecule generates a large number of detectable (e.g. fluorescent) molecules, which can be detected easily.

This principle is also the basis of a well-established method, the enzyme-labeled immunosorbant assay (ELISA). Researchers in Jerusalem have now developed a new ELISA protocol that utilizes two successive enzyme reactions. Enzyme 1 produces many copies of enzyme 2, which in turn produces many copies of a detectable fluorescent dye. In this way, the amplification effect is increased, and the assay is much more sensitive. The research group of Itamar Willner has used this new protocol to develop an ELISA test for telomerase, an important cancer marker. In comparison with traditional telomerase assays, the new method is considerably simpler, more efficient, and more sensitive.

This is how it works: Anti-telomerase antibodies are immobilized on a carrier, to which the test sample is added. The telomerase in the sample adheres to the antibodies. In the next step, another telomerase antibody is added, which recognizes the bound telomerase and binds to it. The trick: this second antibody is fitted with a binding site for a molecular "adaptor". An ecarin enzyme fitted with such an adapter can thus bind to it. Now, the two-stage amplifier can kick in: ecarin converts added prothrombin into thrombin (a reaction that incidentally plays a role in blood clotting). Thrombin is a biocatalyst that is able to liberate the fluorescent dye rhodamine from a nonfluorescent precursor. By measuring the fluorescence, the researchers were able to detect the telomerase from only 1000 cancer cells—an amount that is not detectable using previous detection methods.

The method of nonlinear amplification through coupled enzyme reactions is not only suitable for immunoassays but also for the detection of specific DNA sequences.

Author: Itamar Willner, The Hebrew University of Jerusalem (Israel),

Title: Biocatalytic Evolution of a Biocatalyst Marker: Towards the Ultrasensitive Detection of Immunocomplexes and DNA Analysis

Angewandte Chemie International Edition 2006, 45, No. 29, 4815–4819, doi: 10.1002/anie.200600073

Itamar Willner | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>