Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug dials down the energy within cells

10.07.2006
A drug effective at treating animal models of human autoimmune disorders and other diseases works by dialing down the activity of a key enzyme involved in energy production, University of Michigan researchers have found.

"Many drugs block the function of enzymes, essentially turning them off ," said Gary Glick, who is the Werner E. Bachmann Collegiate Professor of Chemistry at U-M. "Our compound works more like a volume control, so we’re able to dial enzyme activity down to a level that maintains normal function while simultaneously allowing for initiation of a process that selectively kills or disables disease-causing cells."

Glick and collaborators published their findings in the June 16 issue of ACS Chemical Biology.

The drug, discovered by Glick and coworkers and called benzodiazepine-423 (Bz-423), is a chemical cousin of anti-anxiety medications such as Valium and Xanax. In previous work, Glick’s group showed that Bz-423 reduces effects of arthritis and the autoimmune disease lupus in mice and may be useful in treating psoriasis. Unlike conventional drugs for these conditions, which can’t discriminate between healthy and disease-causing cells, Bz-423 is highly selective, homing in on disease-causing cells.

In an attempt to better exploit its therapeutic properties, the researchers have been studying the details of Bz-423’s activity. They learned that the compound targets an enzyme inside mitochondria, the energy factories of cells. The specific enzyme, F1F0-ATPase, is responsible for producing most of the cell’s ATP. That’s a critical role because ATP, often referred to as the cell’s energy currency, is the molecule that captures chemical energy from food and transfers it to energy-demanding processes, such as muscle contraction and the transmission of nerve signals.

"People had proposed in the past that if you could inhibit this enzyme, there might be therapeutic potential. But the problem is, if you inhibit the enzyme in the way most powerful drugs do, turning it off, you deplete the cell of ATP, and that’s fatal," Glick said. "Our new work reveals the mechanism by which Bz-423 inhibits the enzyme while still allowing it to function. This is important because it suggests principles that may be useful for targeting other bioenergetic pathways. Now we have some rules that we can apply to be able to modulate the mitochondria in new ways that could be therapeutic."

Ultimately, the findings may have applications not only for lupus, arthritis and psoriasis, but also for other conditions, Glick believes. "There are other diseases – certain cancers and a number of other immune diseases – where we think the way the cells make and utilize energy is fundamental to the disease process. Combining that knowledge with our new knowledge of how to regulate the energy of the cell could open up new avenues for treating disease and monitoring the effectiveness of treatment."

Glick collaborated on the research with Carol Fierke, who is the Jerome and Isabella Karle Collegiate Professor of Chemistry; Anthony Opipari, Jr., associate professor of obstetrics and gynecology; graduate student Kathryn Johnson and postdoctoral fellow Joanne Cleary. The researchers received funding from the National Institutes of Health.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>