Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug dials down the energy within cells

10.07.2006
A drug effective at treating animal models of human autoimmune disorders and other diseases works by dialing down the activity of a key enzyme involved in energy production, University of Michigan researchers have found.

"Many drugs block the function of enzymes, essentially turning them off ," said Gary Glick, who is the Werner E. Bachmann Collegiate Professor of Chemistry at U-M. "Our compound works more like a volume control, so we’re able to dial enzyme activity down to a level that maintains normal function while simultaneously allowing for initiation of a process that selectively kills or disables disease-causing cells."

Glick and collaborators published their findings in the June 16 issue of ACS Chemical Biology.

The drug, discovered by Glick and coworkers and called benzodiazepine-423 (Bz-423), is a chemical cousin of anti-anxiety medications such as Valium and Xanax. In previous work, Glick’s group showed that Bz-423 reduces effects of arthritis and the autoimmune disease lupus in mice and may be useful in treating psoriasis. Unlike conventional drugs for these conditions, which can’t discriminate between healthy and disease-causing cells, Bz-423 is highly selective, homing in on disease-causing cells.

In an attempt to better exploit its therapeutic properties, the researchers have been studying the details of Bz-423’s activity. They learned that the compound targets an enzyme inside mitochondria, the energy factories of cells. The specific enzyme, F1F0-ATPase, is responsible for producing most of the cell’s ATP. That’s a critical role because ATP, often referred to as the cell’s energy currency, is the molecule that captures chemical energy from food and transfers it to energy-demanding processes, such as muscle contraction and the transmission of nerve signals.

"People had proposed in the past that if you could inhibit this enzyme, there might be therapeutic potential. But the problem is, if you inhibit the enzyme in the way most powerful drugs do, turning it off, you deplete the cell of ATP, and that’s fatal," Glick said. "Our new work reveals the mechanism by which Bz-423 inhibits the enzyme while still allowing it to function. This is important because it suggests principles that may be useful for targeting other bioenergetic pathways. Now we have some rules that we can apply to be able to modulate the mitochondria in new ways that could be therapeutic."

Ultimately, the findings may have applications not only for lupus, arthritis and psoriasis, but also for other conditions, Glick believes. "There are other diseases – certain cancers and a number of other immune diseases – where we think the way the cells make and utilize energy is fundamental to the disease process. Combining that knowledge with our new knowledge of how to regulate the energy of the cell could open up new avenues for treating disease and monitoring the effectiveness of treatment."

Glick collaborated on the research with Carol Fierke, who is the Jerome and Isabella Karle Collegiate Professor of Chemistry; Anthony Opipari, Jr., associate professor of obstetrics and gynecology; graduate student Kathryn Johnson and postdoctoral fellow Joanne Cleary. The researchers received funding from the National Institutes of Health.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>