Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug dials down the energy within cells

10.07.2006
A drug effective at treating animal models of human autoimmune disorders and other diseases works by dialing down the activity of a key enzyme involved in energy production, University of Michigan researchers have found.

"Many drugs block the function of enzymes, essentially turning them off ," said Gary Glick, who is the Werner E. Bachmann Collegiate Professor of Chemistry at U-M. "Our compound works more like a volume control, so we’re able to dial enzyme activity down to a level that maintains normal function while simultaneously allowing for initiation of a process that selectively kills or disables disease-causing cells."

Glick and collaborators published their findings in the June 16 issue of ACS Chemical Biology.

The drug, discovered by Glick and coworkers and called benzodiazepine-423 (Bz-423), is a chemical cousin of anti-anxiety medications such as Valium and Xanax. In previous work, Glick’s group showed that Bz-423 reduces effects of arthritis and the autoimmune disease lupus in mice and may be useful in treating psoriasis. Unlike conventional drugs for these conditions, which can’t discriminate between healthy and disease-causing cells, Bz-423 is highly selective, homing in on disease-causing cells.

In an attempt to better exploit its therapeutic properties, the researchers have been studying the details of Bz-423’s activity. They learned that the compound targets an enzyme inside mitochondria, the energy factories of cells. The specific enzyme, F1F0-ATPase, is responsible for producing most of the cell’s ATP. That’s a critical role because ATP, often referred to as the cell’s energy currency, is the molecule that captures chemical energy from food and transfers it to energy-demanding processes, such as muscle contraction and the transmission of nerve signals.

"People had proposed in the past that if you could inhibit this enzyme, there might be therapeutic potential. But the problem is, if you inhibit the enzyme in the way most powerful drugs do, turning it off, you deplete the cell of ATP, and that’s fatal," Glick said. "Our new work reveals the mechanism by which Bz-423 inhibits the enzyme while still allowing it to function. This is important because it suggests principles that may be useful for targeting other bioenergetic pathways. Now we have some rules that we can apply to be able to modulate the mitochondria in new ways that could be therapeutic."

Ultimately, the findings may have applications not only for lupus, arthritis and psoriasis, but also for other conditions, Glick believes. "There are other diseases – certain cancers and a number of other immune diseases – where we think the way the cells make and utilize energy is fundamental to the disease process. Combining that knowledge with our new knowledge of how to regulate the energy of the cell could open up new avenues for treating disease and monitoring the effectiveness of treatment."

Glick collaborated on the research with Carol Fierke, who is the Jerome and Isabella Karle Collegiate Professor of Chemistry; Anthony Opipari, Jr., associate professor of obstetrics and gynecology; graduate student Kathryn Johnson and postdoctoral fellow Joanne Cleary. The researchers received funding from the National Institutes of Health.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>