Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life Cycle of Operons Yields New Look at Bacterial Genetics

07.07.2006
In a breakthrough that will immediately benefit biologists who study bacteria, and could in the future have bearing on the advancement of synthetic biology, a team of researchers has determined the life cycle of operons, small groups of genes with related functions that are co-transcribed in a single strand of messenger RNA. Present in all known bacterial genomes, operons play a crucial role in gene expression programs that enable microbes to adapt to environmental stresses. This research was conducted by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California at Berkeley, and the Howard Hughes Medical Institute (HHMI).

In a paper published in the June 2006 edition of the Public Library of Science’s Genetics section, entitled The Life-Cycle of Operons, the researchers describe a study in which the genome of Escherichia coli was compared to Salmonella typhimurium and other close relatives, in order to identify recently formed and destroyed operons. The results showed that both operon creation and destruction lead to large changes in gene expression patterns, suggesting that operon evolution reflects a microbe’s adaptation to differing lifestyles.

“Part of what determines the birth and death of operons is the need to generate gene expression patterns in new or changing environments,” said Adam Arkin, a computational biologist who led this research. “It might be intuitive that bringing two related genes into an operon could be adaptive for the regulation of a pathway, but we found that the death of old operons may also be driven by the need for new and different regulation of key genes.”

Arkin is a member of the Department of Computational and Theoretical Biology in Berkeley Lab's Physical Biosciences Division, a UC Berkeley professor in bioengineering, and an HHMI investigator. Coauthoring the PLoS paper with him were Morgan Price and Eric Alm, while all three were affiliated with the Virtual Institute for Microbial Stress and Survival at Berkeley Lab

Operons are widespread in the genomes of all prokaryotes, archaea as well as bacteria. In the typical prokaryote genome, about half of all the protein-coding genes are located in operons. Genes that are placed together in operons can vary widely across different types of microbes. Also, genes that are in the same operon in one bacterium are often found in different operons in other bacteria. The diversity of operon structures, which affects the regulation of gene expression, has been used to predict the function of genes, but, until now, biologists have not really understood why this diversity exists. The consequences of structural diversity in operons have also been unclear.

“Why are operons so prevalent? The traditional view has been that genes are placed in the same operon so that they will have similar expression patterns,” said Arkin. “This also explains why operons tend to contain functionally related genes and why genome rearrangements that would destroy operons are strongly selected against. However, although genes in the same operon mostly do have similar expression patterns, genes can also be co-regulated without being in the same operon.”

To answer questions about operon structural diversity, Arkin, Price and Alm examined newly formed and recently deceased operons of Escherichia coli K12, and compared orthologous operons in Salmonella typhimurium LT2. They also repeated some of their analyses of operon evolution for Bacillus subtilis. Their findings shed new light on how new operons form, how spacing among their constituent genes evolves, and how they die.

In addition to showing that operon evolution is being driven by selection on gene expression patterns, the researchers also showed that some operons undergo accelerated evolution, with multiple new genes being added during brief periods of time. They also found that although genes within operons are usually closely spaced, genes in highly expressed operons may be widely spaced because of regulatory fine-tuning by intervening sequences.

“Operon evolution may be adaptive, but it need not be optimal,” the authors state in their PLoS paper. “New operons often comprise functionally unrelated genes that were already in proximity before the operon formed.”

Arkin, Price and Alm used their findings to create a model for operon evolution which they believe will encourage other biologists to re-think their views on the role of of operons in the adaptation of microbes to their environment.

“Our model of operon evolution should affect how biologists infer function for uncharacterized genes and how the results from future studies of operon structure or gene regulation are interpreted,” Arkin said. “For example, there are immediate applications for the practice of annotating bacterial genomes in that 'new' operons are less likely to give high-quality results for functional inference as 'old' operons would. Also, the ability to predict operons and their evolution should lead to better approaches for detecting groups of genes which work together to perform a cellular function.”

Down the road, the operon evolution model should also benefit synthetic biology.

“Synthetic biologists always need new parts, so our work will ultimately spillover to them too,” said Arkin. “Ultimately we believe it will be possible to infer how different regulatory strategies and operon architectures are being evolutionarily selected and thereby learn what might be good synthetic designs for cellular circuits.”

This research was supported by a grant from the U.S. Department of Energy’s Genomics: GTL program, and by the Howard Hughes Medical Institute.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov.

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>