Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life Cycle of Operons Yields New Look at Bacterial Genetics

07.07.2006
In a breakthrough that will immediately benefit biologists who study bacteria, and could in the future have bearing on the advancement of synthetic biology, a team of researchers has determined the life cycle of operons, small groups of genes with related functions that are co-transcribed in a single strand of messenger RNA. Present in all known bacterial genomes, operons play a crucial role in gene expression programs that enable microbes to adapt to environmental stresses. This research was conducted by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California at Berkeley, and the Howard Hughes Medical Institute (HHMI).

In a paper published in the June 2006 edition of the Public Library of Science’s Genetics section, entitled The Life-Cycle of Operons, the researchers describe a study in which the genome of Escherichia coli was compared to Salmonella typhimurium and other close relatives, in order to identify recently formed and destroyed operons. The results showed that both operon creation and destruction lead to large changes in gene expression patterns, suggesting that operon evolution reflects a microbe’s adaptation to differing lifestyles.

“Part of what determines the birth and death of operons is the need to generate gene expression patterns in new or changing environments,” said Adam Arkin, a computational biologist who led this research. “It might be intuitive that bringing two related genes into an operon could be adaptive for the regulation of a pathway, but we found that the death of old operons may also be driven by the need for new and different regulation of key genes.”

Arkin is a member of the Department of Computational and Theoretical Biology in Berkeley Lab's Physical Biosciences Division, a UC Berkeley professor in bioengineering, and an HHMI investigator. Coauthoring the PLoS paper with him were Morgan Price and Eric Alm, while all three were affiliated with the Virtual Institute for Microbial Stress and Survival at Berkeley Lab

Operons are widespread in the genomes of all prokaryotes, archaea as well as bacteria. In the typical prokaryote genome, about half of all the protein-coding genes are located in operons. Genes that are placed together in operons can vary widely across different types of microbes. Also, genes that are in the same operon in one bacterium are often found in different operons in other bacteria. The diversity of operon structures, which affects the regulation of gene expression, has been used to predict the function of genes, but, until now, biologists have not really understood why this diversity exists. The consequences of structural diversity in operons have also been unclear.

“Why are operons so prevalent? The traditional view has been that genes are placed in the same operon so that they will have similar expression patterns,” said Arkin. “This also explains why operons tend to contain functionally related genes and why genome rearrangements that would destroy operons are strongly selected against. However, although genes in the same operon mostly do have similar expression patterns, genes can also be co-regulated without being in the same operon.”

To answer questions about operon structural diversity, Arkin, Price and Alm examined newly formed and recently deceased operons of Escherichia coli K12, and compared orthologous operons in Salmonella typhimurium LT2. They also repeated some of their analyses of operon evolution for Bacillus subtilis. Their findings shed new light on how new operons form, how spacing among their constituent genes evolves, and how they die.

In addition to showing that operon evolution is being driven by selection on gene expression patterns, the researchers also showed that some operons undergo accelerated evolution, with multiple new genes being added during brief periods of time. They also found that although genes within operons are usually closely spaced, genes in highly expressed operons may be widely spaced because of regulatory fine-tuning by intervening sequences.

“Operon evolution may be adaptive, but it need not be optimal,” the authors state in their PLoS paper. “New operons often comprise functionally unrelated genes that were already in proximity before the operon formed.”

Arkin, Price and Alm used their findings to create a model for operon evolution which they believe will encourage other biologists to re-think their views on the role of of operons in the adaptation of microbes to their environment.

“Our model of operon evolution should affect how biologists infer function for uncharacterized genes and how the results from future studies of operon structure or gene regulation are interpreted,” Arkin said. “For example, there are immediate applications for the practice of annotating bacterial genomes in that 'new' operons are less likely to give high-quality results for functional inference as 'old' operons would. Also, the ability to predict operons and their evolution should lead to better approaches for detecting groups of genes which work together to perform a cellular function.”

Down the road, the operon evolution model should also benefit synthetic biology.

“Synthetic biologists always need new parts, so our work will ultimately spillover to them too,” said Arkin. “Ultimately we believe it will be possible to infer how different regulatory strategies and operon architectures are being evolutionarily selected and thereby learn what might be good synthetic designs for cellular circuits.”

This research was supported by a grant from the U.S. Department of Energy’s Genomics: GTL program, and by the Howard Hughes Medical Institute.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov.

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>