Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life Cycle of Operons Yields New Look at Bacterial Genetics

07.07.2006
In a breakthrough that will immediately benefit biologists who study bacteria, and could in the future have bearing on the advancement of synthetic biology, a team of researchers has determined the life cycle of operons, small groups of genes with related functions that are co-transcribed in a single strand of messenger RNA. Present in all known bacterial genomes, operons play a crucial role in gene expression programs that enable microbes to adapt to environmental stresses. This research was conducted by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California at Berkeley, and the Howard Hughes Medical Institute (HHMI).

In a paper published in the June 2006 edition of the Public Library of Science’s Genetics section, entitled The Life-Cycle of Operons, the researchers describe a study in which the genome of Escherichia coli was compared to Salmonella typhimurium and other close relatives, in order to identify recently formed and destroyed operons. The results showed that both operon creation and destruction lead to large changes in gene expression patterns, suggesting that operon evolution reflects a microbe’s adaptation to differing lifestyles.

“Part of what determines the birth and death of operons is the need to generate gene expression patterns in new or changing environments,” said Adam Arkin, a computational biologist who led this research. “It might be intuitive that bringing two related genes into an operon could be adaptive for the regulation of a pathway, but we found that the death of old operons may also be driven by the need for new and different regulation of key genes.”

Arkin is a member of the Department of Computational and Theoretical Biology in Berkeley Lab's Physical Biosciences Division, a UC Berkeley professor in bioengineering, and an HHMI investigator. Coauthoring the PLoS paper with him were Morgan Price and Eric Alm, while all three were affiliated with the Virtual Institute for Microbial Stress and Survival at Berkeley Lab

Operons are widespread in the genomes of all prokaryotes, archaea as well as bacteria. In the typical prokaryote genome, about half of all the protein-coding genes are located in operons. Genes that are placed together in operons can vary widely across different types of microbes. Also, genes that are in the same operon in one bacterium are often found in different operons in other bacteria. The diversity of operon structures, which affects the regulation of gene expression, has been used to predict the function of genes, but, until now, biologists have not really understood why this diversity exists. The consequences of structural diversity in operons have also been unclear.

“Why are operons so prevalent? The traditional view has been that genes are placed in the same operon so that they will have similar expression patterns,” said Arkin. “This also explains why operons tend to contain functionally related genes and why genome rearrangements that would destroy operons are strongly selected against. However, although genes in the same operon mostly do have similar expression patterns, genes can also be co-regulated without being in the same operon.”

To answer questions about operon structural diversity, Arkin, Price and Alm examined newly formed and recently deceased operons of Escherichia coli K12, and compared orthologous operons in Salmonella typhimurium LT2. They also repeated some of their analyses of operon evolution for Bacillus subtilis. Their findings shed new light on how new operons form, how spacing among their constituent genes evolves, and how they die.

In addition to showing that operon evolution is being driven by selection on gene expression patterns, the researchers also showed that some operons undergo accelerated evolution, with multiple new genes being added during brief periods of time. They also found that although genes within operons are usually closely spaced, genes in highly expressed operons may be widely spaced because of regulatory fine-tuning by intervening sequences.

“Operon evolution may be adaptive, but it need not be optimal,” the authors state in their PLoS paper. “New operons often comprise functionally unrelated genes that were already in proximity before the operon formed.”

Arkin, Price and Alm used their findings to create a model for operon evolution which they believe will encourage other biologists to re-think their views on the role of of operons in the adaptation of microbes to their environment.

“Our model of operon evolution should affect how biologists infer function for uncharacterized genes and how the results from future studies of operon structure or gene regulation are interpreted,” Arkin said. “For example, there are immediate applications for the practice of annotating bacterial genomes in that 'new' operons are less likely to give high-quality results for functional inference as 'old' operons would. Also, the ability to predict operons and their evolution should lead to better approaches for detecting groups of genes which work together to perform a cellular function.”

Down the road, the operon evolution model should also benefit synthetic biology.

“Synthetic biologists always need new parts, so our work will ultimately spillover to them too,” said Arkin. “Ultimately we believe it will be possible to infer how different regulatory strategies and operon architectures are being evolutionarily selected and thereby learn what might be good synthetic designs for cellular circuits.”

This research was supported by a grant from the U.S. Department of Energy’s Genomics: GTL program, and by the Howard Hughes Medical Institute.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov.

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>