Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medium is the message for stem cells in search of identities

06.07.2006
Common culturing surface shown to change fate of stem cells
Embryonic stem cells, prized for their astonishing ability to apparently transform into any kind of cell in the body, acquire their identities in part by interacting with their surroundings - even when they are outside of the body in a laboratory dish, University of Florida scientists report.

Using an animal model of embryonic stem cell development, researchers with UF's McKnight Brain Institute have begun to answer one of the most fundamental questions in science - how does a batch of immature cells give rise to an organ as extraordinarily complex as the human brain?

The findings, to be published this week in the Proceedings of the National Academy of Sciences, may one day help scientists create laboratory environments to grow specialized cells that can be transplanted into patients to treat epilepsy, Parkinson's, Huntington's and Alzheimer's diseases or other brain disorders.

Scientists observed that when embryonic stem cells from mice were plated on four different surfaces in cell culture dishes, specific types of cells would arise.

"The medium and the molecular environment influence the fate of the cell," said Dennis Steindler, Ph.D., executive director of the McKnight Brain Institute. "We simulated some events that occur while the brain is developing and challenged them with different environments, and the effects are profound. Ultimately both nature and nurture influence the final identity of a stem cell, but in early stages it seems nurture is very important."

In experiments, scientists confirmed a cell culture surface molecule called laminin activates a common developmental pathway that is crucial for the generation and survival of particular types of brain cells.

The laminin-influenced stem cells are a kind that goes on to generate a brain structure called the medial ganglionic eminence, which in turn is believed to give rise to a population of early neurons in the developing cerebral cortex, a structure that helps coordinate sensory, motor and cognitive function.

"This is significant because this molecule is frequently used to secure cells onto culture dishes in stem cell labs all over the world," said Bjorn Scheffler, M.D., a neuroscientist with UF's College of Medicine. "Everyone believes this molecule is purely growth supportive, but now we've shown it changes the fate of cells it is working with. When you grow the cells in a culture dish you are actually educating them to become something very special."

In that respect, the discovery sheds light on how embryonic stem cells diversify to form various neural structures, one of the fundamental mysteries of brain development, the researchers say.

Since the 1980s, Steindler has studied the effect of certain molecules in the extracellular matrix, a mixture that surrounds developing brain cells. Transiently appearing and disappearing, these molecules apparently cordon the brain into different regions.

If molecules from the matrix activate genes in stem cells responsible for generating neural components, potentially any of the molecules can be tested to find its specific role during development of the brain, according to UF neuroscientist Katrin Goetz, M.D., first author of the paper.

In addition, the discovery reinforces a notion that rodent embryonic stem cell biology can be used to understand basic brain mechanisms, potentially leading to treatments where adult stem cells are taken from patients, cultured and transplanted into damaged brain environments to restore functions lost to disease or injury.

"We largely keep the brain cells we are born with for life, but we also have stem cells in our brain that can divide and make new neurons for maintenance," said Gordon Fishell, Ph.D., a professor of cell biology with the Skirball Institute of Biomolecular Medicine at New York University Medical Center who was not involved in the research. "Stem cells continue to proliferate because they are in a specialized 'niche' that nurtures them and keeps them dividing. Previous studies have shown that factors in the niche are important for stem cell proliferation. Less studied are the means by which these cells are directed to become specific types of neurons useful in the adult brain. This work is the first to systematically look at how components in the extracellular matrix affect the fate of these cells. It seems the niche doesn't just support these cells, it tells them what to become. It educates stem cells for a bright future."

John Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>