Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene therapy may lead to cure in hemophilia A patients

05.07.2006
Even hard to treat subset requiring expensive treatment

A discovery by Medical College of Wisconsin and BloodCenter of Wisconsin researchers in Milwaukee may be a key to a permanent genetic cure for hemophilia A patients, including a subset who do not respond to conventional blood transfusions. The study of genetically altered hemophilia mice is published in the July 2006 edition of The Journal of Clinical Investigation.

Hemophilia A affects about one in 5,000 males who lack the hereditary blood clotting protein, Factor VIII (FVIII). Traditional treatment requires infusion of synthetic FVIII two to three times a week to control bleeding episodes. However, about 30 percent of these patients develop antibodies to FVIII, selectively inactivating its clotting properties and negating its therapeutic role. Treatment for adults who have these inhibitory antibodies can cost over $1 million annually if there is a major bleeding episode.

"We developed a Trojan horse approach cloaking FVIII in a platelet so that it is undetected by the antibodies and its clotting properties are preserved until the platelet sticks to a damaged blood vessel and releases its stored protein which now includes FVIII.," explains senior author Robert R. Montgomery, M.D., senior investigator at the BloodCenter of Wisconsin and professor of pediatric hematology at the Medical College. He is also affiliated with the Children's Research Institute.

"This is truly a landmark development for hemophilia A patients," says hematologist, Joan Gill, M.D., professor of pediatric hematology at the Medical College, and director of the Comprehensive Center for Bleeding Disorders at the BloodCenter and Children's Hospital of Wisconsin. "We look forward to the day when basic research is completed and clinical trials can begin in patients."

Normally in an injury, platelets circulating in plasma - the liquid portion of the blood - stick to the site of the blood vessel wound, activating its surface and rapidly stopping bleeding. In hemophilia patients, infusion of FVIII replaces the missing clotting factor and enables normal cessation of bleeding. However, some 30 percent of patients see the FVIII as a foreign protein and mount antibodies to destroy it, rendering the FVIII treatment useless.

Newer FVIII treatment products that bypass this attack can run into $10,000 or $100,000 per treatment episode and costs for a patient may exceed $1 million annually. So far attempts at gene therapy for a permanent cure have not been successful.

According to the lead author, Qizhen Shi, M.D., Ph.D., an American Heart Association supported postdoctoral fellow, "Our team of scientists have developed an approach in mice that not only could make gene therapy successful for patients with hemophilia who don't have antibodies, but more importantly can be used to treat patients with antibodies.

"To get around the antibody attack on FVIII which occurs readily in plasma, we inserted a gene into a blood stem cell so that FVIII is produced and stored in blood platelets, hidden from view and attack, ready to release when a blood vessel is damaged, quickly enabling normal clotting before the antibodies can begin their attack. Our approach was very effective even in mice treated with five to ten thousand times the amount of antibody that would normally prevent treatment of a hemophilia patient with FVIII."

The new method will next be tested in larger animal models before clinical trials can begin in patients. Blood and bone marrow stem cells would be harvested from hemophilia patients in much the same way they are collected from bone marrow donors. A non-replicative virus containing the FVIII gene would be introduced into the stem cells from the patient. The FVIII engineered for production only in platelets would insert itself into the DNA of the stem cells. These same stem cells would then be given back to the donor patient and the stem cells would continue to make blood cells normally, releasing the life saving FVIII only when the platelets stick to a bleeding site of injury.

"This process would last for the rest of the patient's life and will work regardless of whether antibodies are present or absent," says Dr. Montgomery. "There will be many more studies needed to apply this approach in patients but this treatment could normalize bleeding for patients with hemophilia.

"What is most exciting about this first design of gene therapy for hemophilia is that it works not only for routine hemophilia but also for the 30 percent of patients who have developed inhibitory antibodies that make normal replacement treatment impossible," Dr. Montgomery concludes.

Toranj Marphetia | EurekAlert!
Further information:
http://www.mcw.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>