Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene therapy may lead to cure in hemophilia A patients

05.07.2006
Even hard to treat subset requiring expensive treatment

A discovery by Medical College of Wisconsin and BloodCenter of Wisconsin researchers in Milwaukee may be a key to a permanent genetic cure for hemophilia A patients, including a subset who do not respond to conventional blood transfusions. The study of genetically altered hemophilia mice is published in the July 2006 edition of The Journal of Clinical Investigation.

Hemophilia A affects about one in 5,000 males who lack the hereditary blood clotting protein, Factor VIII (FVIII). Traditional treatment requires infusion of synthetic FVIII two to three times a week to control bleeding episodes. However, about 30 percent of these patients develop antibodies to FVIII, selectively inactivating its clotting properties and negating its therapeutic role. Treatment for adults who have these inhibitory antibodies can cost over $1 million annually if there is a major bleeding episode.

"We developed a Trojan horse approach cloaking FVIII in a platelet so that it is undetected by the antibodies and its clotting properties are preserved until the platelet sticks to a damaged blood vessel and releases its stored protein which now includes FVIII.," explains senior author Robert R. Montgomery, M.D., senior investigator at the BloodCenter of Wisconsin and professor of pediatric hematology at the Medical College. He is also affiliated with the Children's Research Institute.

"This is truly a landmark development for hemophilia A patients," says hematologist, Joan Gill, M.D., professor of pediatric hematology at the Medical College, and director of the Comprehensive Center for Bleeding Disorders at the BloodCenter and Children's Hospital of Wisconsin. "We look forward to the day when basic research is completed and clinical trials can begin in patients."

Normally in an injury, platelets circulating in plasma - the liquid portion of the blood - stick to the site of the blood vessel wound, activating its surface and rapidly stopping bleeding. In hemophilia patients, infusion of FVIII replaces the missing clotting factor and enables normal cessation of bleeding. However, some 30 percent of patients see the FVIII as a foreign protein and mount antibodies to destroy it, rendering the FVIII treatment useless.

Newer FVIII treatment products that bypass this attack can run into $10,000 or $100,000 per treatment episode and costs for a patient may exceed $1 million annually. So far attempts at gene therapy for a permanent cure have not been successful.

According to the lead author, Qizhen Shi, M.D., Ph.D., an American Heart Association supported postdoctoral fellow, "Our team of scientists have developed an approach in mice that not only could make gene therapy successful for patients with hemophilia who don't have antibodies, but more importantly can be used to treat patients with antibodies.

"To get around the antibody attack on FVIII which occurs readily in plasma, we inserted a gene into a blood stem cell so that FVIII is produced and stored in blood platelets, hidden from view and attack, ready to release when a blood vessel is damaged, quickly enabling normal clotting before the antibodies can begin their attack. Our approach was very effective even in mice treated with five to ten thousand times the amount of antibody that would normally prevent treatment of a hemophilia patient with FVIII."

The new method will next be tested in larger animal models before clinical trials can begin in patients. Blood and bone marrow stem cells would be harvested from hemophilia patients in much the same way they are collected from bone marrow donors. A non-replicative virus containing the FVIII gene would be introduced into the stem cells from the patient. The FVIII engineered for production only in platelets would insert itself into the DNA of the stem cells. These same stem cells would then be given back to the donor patient and the stem cells would continue to make blood cells normally, releasing the life saving FVIII only when the platelets stick to a bleeding site of injury.

"This process would last for the rest of the patient's life and will work regardless of whether antibodies are present or absent," says Dr. Montgomery. "There will be many more studies needed to apply this approach in patients but this treatment could normalize bleeding for patients with hemophilia.

"What is most exciting about this first design of gene therapy for hemophilia is that it works not only for routine hemophilia but also for the 30 percent of patients who have developed inhibitory antibodies that make normal replacement treatment impossible," Dr. Montgomery concludes.

Toranj Marphetia | EurekAlert!
Further information:
http://www.mcw.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>