Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant scientists tweak their biopharmaceutical corn research project

27.06.2006
A biopharmaceutical corn created at Iowa State University is getting a makeover. Researchers are developing the corn into a variety that keeps the therapeutic protein, but eliminates the pollen. And they're using traditional breeding to do it.

ISU researchers have had promising results using the biopharmaceutical corn to treat bacterial diarrhea in pigs.

Now they are shifting their focus. They are developing a male sterile corn that carries the transgene. Because male sterile corn plants do not produce pollen, the new biopharmaceutical variety could be grown in corn-producing states without risk of pollinating traditional corn varieties.

"Pollen movement is the issue," said Kendall Lamkey, interim chair of agronomy and Pioneer Distinguished Chair in Maize Breeding. "And that's the most controllable part of the corn production system."

Lamkey, who also directs the Raymond F. Baker Center for Plant Breeding, leads the breeding portion of the research. Kan Wang, the principal researcher, who successfully transformed the corn, is professor of agronomy and director of the Center for Plant Transformation. Both centers are part of Iowa State's Plant Sciences Institute, which initiated the research. The ongoing project is supported by the institute and the College of Agriculture.

Lamkey and Wang say it will take about five growing seasons to make all the breeding crosses needed. The first season took place last winter in the Plant Sciences Institute's Roy J. Carver Co-Laboratory biosafe greenhouse. The biopharmaceutical corn was crossed with the non-transgenic, male-fertile corn line to produce a transgenic F1 hybrid.

Seeds from that cross are being used this summer in a field trial on remote land owned by Iowa State.

The breeding process in the field trial will not shed transgenic pollen. The transgenic crop will be detasseled. It will be surrounded by rows of non-transgenic corn, which will pollinate the detasseled transgenic plants.

Iowa State received permit approval from the U.S. Department of Agriculture's Animal and Plant Health Inspection Service (APHIS) and from the state for the research.

The research plot is located on less than one-half acre of university land in Marshall county. It is about a half mile away from and was planted 28 days later than the nearest commercial corn. A fence will keep out wildlife. The research exceeds APHIS requirements for field trials of regulated plants.

The seed harvested in the fall will be used in the winter again in the high containment greenhouse. Another field trial is expected to take place next summer.

The 2006 field trial is the latest in a series of transgenic corn experiments led by Iowa State researchers. All have received federal and state approval. The trials have taken place three times in Iowa and once in Colorado.

The research is part of Iowa State's work to evaluate the safe use of plants for the production of proteins for pharmaceuticals and industrial products.

Wang engineered the corn to produce LT-B, a protein subunit produced by some strains of E. coli. Research has shown the ability of the protein to stimulate protective immune antibodies. Other Iowa State scientists have been evaluating grain from previous years' studies to understand how the corn-based pharmaceutical can help protect livestock from bacterial infections.

The system being developed in corn will work with other proteins. Corn is the preferred plant for producing proteins for non-food products.

"It's so easy to manipulate from a breeding perspective, and the pollen can be controlled," Lamkey said. "You can't control the pollen easily in self-pollinating crops like soybeans."

"And from a molecular biology and biochemistry point of view, we know so much about corn," Wang said. "Corn seed is such a good reservoir for foreign protein. And the grain, from a pharmacological standpoint, is the grain best tolerated by humans and animals both. Almost nobody is allergic to corn protein."

Lamkey said Iowa State is uniquely qualified to pursue this research because of access to germplasm and "not many places have the genetic transformation capabilities that Iowa State has."

Lamkey and Wang are considering breeding the transgene into a higher yielding, better seed producing, transformable corn inbred line.

"The line that has been used for this corn is really hard to work with in terms of pollination and seed production. It was bred for the purpose of transformation not the field," Lamkey said.

"The best part of this project is that finally conventional breeders like me are now working with molecular biologists like Dr. Wang," Lamkey said. "We're trying to get something that's mutually beneficial. This hasn't happened enough in the public sector."

Teddi Barron | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>