Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado team solves mystery of carcinogenic mothballs

22.06.2006
Chemical compounds in household products like mothballs and air fresheners can cause cancer by blocking the normal process of "cell suicide" in living organisms, according to a new study spearheaded by the University of Colorado at Boulder.

Naphthalene in mothballs and para-dichlorobenzene, or PDCB, found in some air fresheners, were shown to block enzymes that initiate programmed cell death, or apoptosis, said Associate Professor Ding Xue of CU-Boulder's molecular, cellular and developmental biology department. Apoptosis is a normal function of certain cell groups that acts as a "brake" to prevent unchecked cellular proliferation similar to the process that triggers the formation of cancerous tumors, said Xue.

While naphthalene and PDCB have been shown to cause cancer in rodents and are classified by the National Toxicology Program and the International Association for Research on Carcinogens as potential human carcinogens, their biochemistry has not been well understood, said Xue. But using a common, eyelash-sized worm known as C. elegans, the research team has shown that naphthalene can cause the inactivation of a group of enzymes known as caspases -- which control cell suicide -- by oxidizing them.

The study appears in the June issue of Nature Chemical Biology. It was authored by Xue and David Kokel of CU-Boulder's MCD biology department and Yehua Li and Jun Qin of the Baylor College of Medicine in Houston.

"This study shows why mothballs and some air freshener products may be harmful to humans," said Xue. "And, for the first time, we have developed a systematic way to screen virtually any potential cancer-causing chemical that may affect humans using these nematodes as animal models."

In the study, caspase enzymes from both nematodes and from humans were blocked after exposure to naphthalene, indicating a "comparable pharmacology" between worms and humans, said Xue.

Understanding how carcinogenic compounds can trigger tumor growth is important for federal regulatory agencies that deal with human exposure to hazardous chemicals, said Xue. More than 1 million pounds of naphthalene and PDCB are used by consumers annually, according to the study.

The nematodes were grown on a culture medium coated with a soybean-based oil that is harmless to the worms but which can dissolve naphthalene and PDCBs, said Xue. When the chemicals were added to the culture, they deactivated the caspases, resulting in the survival of "extra" cells in the tiny worms that normally would have been eliminated by apoptosis, said Xue.

Apoptosis is an essential process in animal development and occurs in many tissues, said Xue. In amphibians it rids frogs of tails as they develop from larvae to adults, and in humans it removes cells that make up "webbing" tissue between the fingers and toes of embryos during development, he said.

"Apoptosis serves as a checking mechanism to ensure that the right amount of cells are generated in the body," Xue said. In Alzheimer's disease and Parkinson's disease, too much apoptosis is occurring, while in cancer and autoimmune disorders, too little apoptosis is occurring, he said.

Popular with scientists in research labs around the world, C. elegans worms have essentially the same basic biological processes as humans even though their average lifespan is less than three days, he said. Xue's team currently is using C. elegans as an animal model "bioassay" to test common industrial chemicals like biphenyl, toluene and benzene that are suspected to be carcinogens.

"The power of C. elegans' molecular genetics, in combination with the possibility of carrying out large-scale chemical screens in this organism, makes C. elegans an attractive and economical animal model for both toxicological studies and drug screens," the researchers wrote in Nature Chemical Biology.

"Bioassays involving lab rats can take two years to complete," he said. "But we can do the same kind of bioassays with nematodes in two weeks, and we can do them at our lab benches instead of animal care facilities."

Ding Xue | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>