Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado team solves mystery of carcinogenic mothballs

22.06.2006
Chemical compounds in household products like mothballs and air fresheners can cause cancer by blocking the normal process of "cell suicide" in living organisms, according to a new study spearheaded by the University of Colorado at Boulder.

Naphthalene in mothballs and para-dichlorobenzene, or PDCB, found in some air fresheners, were shown to block enzymes that initiate programmed cell death, or apoptosis, said Associate Professor Ding Xue of CU-Boulder's molecular, cellular and developmental biology department. Apoptosis is a normal function of certain cell groups that acts as a "brake" to prevent unchecked cellular proliferation similar to the process that triggers the formation of cancerous tumors, said Xue.

While naphthalene and PDCB have been shown to cause cancer in rodents and are classified by the National Toxicology Program and the International Association for Research on Carcinogens as potential human carcinogens, their biochemistry has not been well understood, said Xue. But using a common, eyelash-sized worm known as C. elegans, the research team has shown that naphthalene can cause the inactivation of a group of enzymes known as caspases -- which control cell suicide -- by oxidizing them.

The study appears in the June issue of Nature Chemical Biology. It was authored by Xue and David Kokel of CU-Boulder's MCD biology department and Yehua Li and Jun Qin of the Baylor College of Medicine in Houston.

"This study shows why mothballs and some air freshener products may be harmful to humans," said Xue. "And, for the first time, we have developed a systematic way to screen virtually any potential cancer-causing chemical that may affect humans using these nematodes as animal models."

In the study, caspase enzymes from both nematodes and from humans were blocked after exposure to naphthalene, indicating a "comparable pharmacology" between worms and humans, said Xue.

Understanding how carcinogenic compounds can trigger tumor growth is important for federal regulatory agencies that deal with human exposure to hazardous chemicals, said Xue. More than 1 million pounds of naphthalene and PDCB are used by consumers annually, according to the study.

The nematodes were grown on a culture medium coated with a soybean-based oil that is harmless to the worms but which can dissolve naphthalene and PDCBs, said Xue. When the chemicals were added to the culture, they deactivated the caspases, resulting in the survival of "extra" cells in the tiny worms that normally would have been eliminated by apoptosis, said Xue.

Apoptosis is an essential process in animal development and occurs in many tissues, said Xue. In amphibians it rids frogs of tails as they develop from larvae to adults, and in humans it removes cells that make up "webbing" tissue between the fingers and toes of embryos during development, he said.

"Apoptosis serves as a checking mechanism to ensure that the right amount of cells are generated in the body," Xue said. In Alzheimer's disease and Parkinson's disease, too much apoptosis is occurring, while in cancer and autoimmune disorders, too little apoptosis is occurring, he said.

Popular with scientists in research labs around the world, C. elegans worms have essentially the same basic biological processes as humans even though their average lifespan is less than three days, he said. Xue's team currently is using C. elegans as an animal model "bioassay" to test common industrial chemicals like biphenyl, toluene and benzene that are suspected to be carcinogens.

"The power of C. elegans' molecular genetics, in combination with the possibility of carrying out large-scale chemical screens in this organism, makes C. elegans an attractive and economical animal model for both toxicological studies and drug screens," the researchers wrote in Nature Chemical Biology.

"Bioassays involving lab rats can take two years to complete," he said. "But we can do the same kind of bioassays with nematodes in two weeks, and we can do them at our lab benches instead of animal care facilities."

Ding Xue | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>