Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flatfish slime could become medication

22.06.2006
How would you feel about taking medicine made from fish slime? Researchers have found that the slime that covers the flat-fish plaice contains a substance that kills staphylococcus. Perhaps this substance from fish slime can be the answer to beating hospital bacteria?

Chemical engineer Trude Tvete has found a bacteria-killing protein in plaice slime, isolated the protein from the slime and tested it on staphylococcus bacteria.


Plie

"The protein from fish slime has proven itself to be extremely deadly for the bacteria I have tested", says Trude Tvete, Nord-Trondelag University College (HiNT) in Norway.

Cleaned and tested slime

She has developed a technique to clean and separate the slime from plaice into its component parts and test it on several bacteria types.

"Previous research has shown that plaice slime kills bacteria, but it didn’t show which substance breaks the bacteria. I found that there is a protein in the slime that has the greatest effect,” says Trude Tvete.

Bacteria-killing substances from plants and animals are of interest for uses such as in hospitals that are beset with bacteria that has become resistant to antibiotics.

To make sure she had access to fresh plaice, she allied herself with local fishermen. In the laboratory, she scrapped the slime from the fish and testing with bacterial showed the slime with the greatest effect came from quite deep within the fish skin.

"So began the laborious work in the biotech laboratory to isolate the different substances from the fish slime. The protein we isolated was 95 percent pure in the end, and after that we tested it on the Staphylococcus aureus bacteria. It was shown to be very efficient at killing the bacteria", says Trude Tvete.

Could become medication

The bacteria-killing proteins and the other substances are an important part of the plaice’s immune system. One result of this research is that this slime can become the source for new medications for humans.

Because new infections constantly appear around the world as some bacteria become resistant to antibiotics, it is important to find new bacteria-killing agents. Substances from fish are especially interesting. The plaice has the potential to be fish farmed, and bio-products such as antibiotic agents could possibly increase the value of such an enterprise.

"Many bacteria-killing substances from mammals have been researched, but few have studied fish. The substances that can be isolated from fish have several properties that make them an attractive starting point for production of medications. They are built-up in a different way and can therefore overcome bacteria that have become resistant to antibiotics", explains Trude Tvete.

In the chemical engineering area at HiNT’s engineering department, research on the bacteria-killing properties of fish slime has been underway for several year. Several undergraduate chemical engineering students have worked with plaice slime as part of their major project.

Anne Sigrid Haugset | alfa
Further information:
http://www.forskningsradet.no/

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>