Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flatfish slime could become medication

22.06.2006
How would you feel about taking medicine made from fish slime? Researchers have found that the slime that covers the flat-fish plaice contains a substance that kills staphylococcus. Perhaps this substance from fish slime can be the answer to beating hospital bacteria?

Chemical engineer Trude Tvete has found a bacteria-killing protein in plaice slime, isolated the protein from the slime and tested it on staphylococcus bacteria.


Plie

"The protein from fish slime has proven itself to be extremely deadly for the bacteria I have tested", says Trude Tvete, Nord-Trondelag University College (HiNT) in Norway.

Cleaned and tested slime

She has developed a technique to clean and separate the slime from plaice into its component parts and test it on several bacteria types.

"Previous research has shown that plaice slime kills bacteria, but it didn’t show which substance breaks the bacteria. I found that there is a protein in the slime that has the greatest effect,” says Trude Tvete.

Bacteria-killing substances from plants and animals are of interest for uses such as in hospitals that are beset with bacteria that has become resistant to antibiotics.

To make sure she had access to fresh plaice, she allied herself with local fishermen. In the laboratory, she scrapped the slime from the fish and testing with bacterial showed the slime with the greatest effect came from quite deep within the fish skin.

"So began the laborious work in the biotech laboratory to isolate the different substances from the fish slime. The protein we isolated was 95 percent pure in the end, and after that we tested it on the Staphylococcus aureus bacteria. It was shown to be very efficient at killing the bacteria", says Trude Tvete.

Could become medication

The bacteria-killing proteins and the other substances are an important part of the plaice’s immune system. One result of this research is that this slime can become the source for new medications for humans.

Because new infections constantly appear around the world as some bacteria become resistant to antibiotics, it is important to find new bacteria-killing agents. Substances from fish are especially interesting. The plaice has the potential to be fish farmed, and bio-products such as antibiotic agents could possibly increase the value of such an enterprise.

"Many bacteria-killing substances from mammals have been researched, but few have studied fish. The substances that can be isolated from fish have several properties that make them an attractive starting point for production of medications. They are built-up in a different way and can therefore overcome bacteria that have become resistant to antibiotics", explains Trude Tvete.

In the chemical engineering area at HiNT’s engineering department, research on the bacteria-killing properties of fish slime has been underway for several year. Several undergraduate chemical engineering students have worked with plaice slime as part of their major project.

Anne Sigrid Haugset | alfa
Further information:
http://www.forskningsradet.no/

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>