Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover which organs in Antarctic fish produce antifreeze

20.06.2006
Thirty-five years ago Arthur DeVries of the University of Illinois at Urbana-Champaign first documented antifreeze glycoproteins (AFGPs) in Antarctic notothenioid fishes. This month three colleagues report they've solved the ensuing, long-running mystery of where these AFGPs, which allow the fish to survive in icy waters, are produced.

"Ever since the discovery of these antifreeze proteins, it was assumed they had to be produced in the liver, since the vertebrate liver is well known as a source of secreted plasma protein, so there was no reason to think otherwise," said Chi-Hing "Christina" C. Cheng, a professor of animal biology. "It turns out that the liver has no role in the freezing avoidance in these fishes at all."

Instead, antifreeze glycoproteins (AFGP) originate primarily from the exocrine pancreas and the stomach, say Cheng, Paul A. Cziko and Clive W. Evans in a paper appearing online this week ahead of regular publication in the Proceedings of the National Academy of Sciences.

Cziko is a research specialist at Illinois. Evans is a professor of molecular genetics and development at the University of Auckland in New Zealand.

The liver-synthesis mindset dominated earlier studies even though results appeared to be at odds, Cheng said. The first radioactive-tracer characterization of liver AFGP biosynthesis, in fact, suggested another source of production was possible. Later on, Northern-blot studies had shown very low expression levels of antifreeze messenger RNA in the liver, but this was inconsistent with high levels of production of the protein, the researchers noted.

Cheng and colleagues used Northern blots of total RNA from various tissues to hybridize with an AFGP gene probe. A clear picture of strong AFGP mRNA expression came into focus in the pancreatic tissues in all notothenioids tested. The use of cDNA cloning and sequencing showed that the mRNA all encode secreted AFGPs.

An RNA analysis from tissues of a single notothenioid unveiled the anterior portion of the stomach, next to the esophagus-stomach junction, as being the only other site with strong AFGP mRNA expression. Using antibodies, the researchers found the absence of liver synthesis and strong pancreas expression in newly hatched fish larvae and young juveniles.

The exocrine pancreas is the larger of the two parts that make up the pancreas. It consists of tubuloacinar glands that primarily manufacture and secrete digestive enzymes that break down food in the intestine so it can be absorbed.

In this case, AFGPs are secreted into the intestinal lumen where they protect the intestinal fluid from being frozen by ice crystals that come in with seawater and food. Internal fluids in notothenioids are about one-half as salty as seawater.

While seawater reaches its freezing point at –1.91 degrees Celsius, fish fluids freeze at about –1 degree Celsius. These species dwell in water that rarely rises above the freezing point and is regularly filled with ice crystals.

From the intestine, the AFGPs are, apparently, absorbed into the blood. This hypothesis is based on the near-identical composition and abundance of AFGPs found in the fish serum.

"In this comprehensive study, we confirm that the exocrine pancreas is the major AFGP synthesis site in Antarctic notothenioid fishes from hatching through adulthood, while the liver is AFGP-expression null in all life stages," the researchers conclude. "Because the notothenioids are confined to chronically icy Antarctic waters, and face high risks of ice inoculation from frequent seawater drinking, the evolution of AFGPs in these fishes was probably driven first and foremost by the need to prevent the hyposmotic intestinal fluid from freezing."

The researchers also studied a variety of fishes from Arctic waters that have liver expression of AFGPs, and found that all of them also express antifreeze in the pancreas.

The findings, they wrote, bring a new perspective to teleost freeze-avoidance physiology and "reveals that the long-held paradigm of hepatic-based AF synthesis and secretion is no longer universally applicable." Instead, pancreatic antifreeze expression is universal.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>