Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover which organs in Antarctic fish produce antifreeze

20.06.2006
Thirty-five years ago Arthur DeVries of the University of Illinois at Urbana-Champaign first documented antifreeze glycoproteins (AFGPs) in Antarctic notothenioid fishes. This month three colleagues report they've solved the ensuing, long-running mystery of where these AFGPs, which allow the fish to survive in icy waters, are produced.

"Ever since the discovery of these antifreeze proteins, it was assumed they had to be produced in the liver, since the vertebrate liver is well known as a source of secreted plasma protein, so there was no reason to think otherwise," said Chi-Hing "Christina" C. Cheng, a professor of animal biology. "It turns out that the liver has no role in the freezing avoidance in these fishes at all."

Instead, antifreeze glycoproteins (AFGP) originate primarily from the exocrine pancreas and the stomach, say Cheng, Paul A. Cziko and Clive W. Evans in a paper appearing online this week ahead of regular publication in the Proceedings of the National Academy of Sciences.

Cziko is a research specialist at Illinois. Evans is a professor of molecular genetics and development at the University of Auckland in New Zealand.

The liver-synthesis mindset dominated earlier studies even though results appeared to be at odds, Cheng said. The first radioactive-tracer characterization of liver AFGP biosynthesis, in fact, suggested another source of production was possible. Later on, Northern-blot studies had shown very low expression levels of antifreeze messenger RNA in the liver, but this was inconsistent with high levels of production of the protein, the researchers noted.

Cheng and colleagues used Northern blots of total RNA from various tissues to hybridize with an AFGP gene probe. A clear picture of strong AFGP mRNA expression came into focus in the pancreatic tissues in all notothenioids tested. The use of cDNA cloning and sequencing showed that the mRNA all encode secreted AFGPs.

An RNA analysis from tissues of a single notothenioid unveiled the anterior portion of the stomach, next to the esophagus-stomach junction, as being the only other site with strong AFGP mRNA expression. Using antibodies, the researchers found the absence of liver synthesis and strong pancreas expression in newly hatched fish larvae and young juveniles.

The exocrine pancreas is the larger of the two parts that make up the pancreas. It consists of tubuloacinar glands that primarily manufacture and secrete digestive enzymes that break down food in the intestine so it can be absorbed.

In this case, AFGPs are secreted into the intestinal lumen where they protect the intestinal fluid from being frozen by ice crystals that come in with seawater and food. Internal fluids in notothenioids are about one-half as salty as seawater.

While seawater reaches its freezing point at –1.91 degrees Celsius, fish fluids freeze at about –1 degree Celsius. These species dwell in water that rarely rises above the freezing point and is regularly filled with ice crystals.

From the intestine, the AFGPs are, apparently, absorbed into the blood. This hypothesis is based on the near-identical composition and abundance of AFGPs found in the fish serum.

"In this comprehensive study, we confirm that the exocrine pancreas is the major AFGP synthesis site in Antarctic notothenioid fishes from hatching through adulthood, while the liver is AFGP-expression null in all life stages," the researchers conclude. "Because the notothenioids are confined to chronically icy Antarctic waters, and face high risks of ice inoculation from frequent seawater drinking, the evolution of AFGPs in these fishes was probably driven first and foremost by the need to prevent the hyposmotic intestinal fluid from freezing."

The researchers also studied a variety of fishes from Arctic waters that have liver expression of AFGPs, and found that all of them also express antifreeze in the pancreas.

The findings, they wrote, bring a new perspective to teleost freeze-avoidance physiology and "reveals that the long-held paradigm of hepatic-based AF synthesis and secretion is no longer universally applicable." Instead, pancreatic antifreeze expression is universal.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>