Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare disease's gene may illuminate major disorders

20.06.2006
OHSU discovery of gene behind iron accumulation in brain has implications for Parkinson's, Alzheimer's

Oregon Health & Science University researchers have identified the gene behind a group of rare, progressive childhood disorders caused by an abnormal buildup of iron in the brain.

Discovery of the PLA2G6 gene, whose mutated forms trigger several genetic disorders categorized as neuroaxonal dystrophies, could shed light on the nerve cell degeneration that leads to such neurological maladies as Parkinson's and Alzheimer's diseases, both known to be associated with brain iron accumulation.

"If you're a family with a kid with one of these diseases, the impact is clear, specific and personal," said Susan J. Hayflick, M.D., professor of molecular and medical genetics, pediatrics and neurology in the OHSU School of Medicine. But because it may heighten understanding of other, better-known neurological disorders, "To the general population, (the discovery) has a larger impact, and that's a significant benefit."

In a study published online June 18 in the journal Nature Genetics, Hayflick and an international team of geneticists describe PLA2G6's discovery using DNA from families with infantile neuroaxonal dystrophy, or INAD, and a related disorder known as neurodegeneration with brain iron accumulation, or NBIA.

In INAD, also known as Seitelberger disease, symptoms start by age 2 and worsen over time, and include loss of head control and the ability to sit, crawl or walk, as well as deteriorating vision and speech, according to the National Institute of Neurological Disorders and Stroke, a branch of the National Institutes of Health. Children with the disease die between ages 5 and 10.

NBIA, sometimes called Hallervorden-Spatz syndrome, manifests itself between the teen years and adulthood. Symptoms include involuntary muscle contractions, rigidity and spasms in the limbs, face and torso, as well as confusion, disorientation, seizures, stupor and dementia. Rapid deterioration, punctuated by stable periods, lasts one to two months, with the rate of progression correlating with the patient's age – the later the onset, the better the patient fares. There is no cure nor standard treatment for either disease, which are inherited in a recessive fashion, meaning that both parents must contribute a defective gene to make both copies in the child defective. Incidence is 1 in 500,000 to 1 million.

PLA2G6's discovery means a clinical test can be developed to help families determine their chances of passing the disorders to their children.

"That's a direct outcome of this work," Hayflick said. "There are families who literally are waiting to have this test. They've been waiting for years. To have the option of bringing a child into this world you know won't have to suffer like this is extraordinary for a parent who's been through this. Some of them have had multiple children with the disease."

The disorders are caused by a build-up of iron in the basal ganglia, a cluster of gray-matter tissue structures deep in the brain that control motor function. The iron accumulation causes the branch-like axons that transmit electrical impulses from the nerve cell body to its terminal to swell, interrupting the signal sent to other nerve cells nearby.

PLA2G6 is thought to encode an enzyme that breaks down lipids involved in the reconstruction of a cell's membrane following damage by light and other toxins. When the gene is mutated, lipid metabolism is altered and iron builds up, triggering disease.

"I studied our entire INAD patient population for mutations in this gene and found over 44 different changes in the gene which would lead to disease," said study co-author Shawn Westaway, Ph.D., research assistant professor of molecular and medical genetics at OHSU. Working with scientists at the University of Birmingham School of Medicine, United Kingdom, Hayflick and Westaway collected DNA from 30 to 40 families affected by the diseases and narrowed the search for the suspect gene to a 100-gene block of DNA on chromosome 22, the second smallest chromosome in humans that contains 500 to 800 genes. The team then looked for genes in the region whose function was suggestive of the symptoms and parts of the body affected by the diseases, and the search was further narrowed to 75 genes.

"You just start sequencing genes and compare healthy people to people with the disease," Hayflick said. "In people with the disease, you see changes that are clearly disease causing."

After scouring the 75 genes, "we finally found mutations in PLA2G6 in a large kindred with multiple generations of affected individuals, and in three other smaller families," Westaway said.

The chromosomes containing the mutations are then compared to almost 200 control chromosomes not affected by the disease. "The severity of the mutation is usually a very good clue that the gene has been found," she said. "That evidence is confirmed by continuing to find different, but severe, mutations in the same gene in new patients diagnosed with INAD, which we have done."

PLA2G6 is among 18 lipid-metabolizing genes in a protein family known as phospholipase A2 (PLA2), and INAD is the first inherited disorder associated with mutations in one of these genes. Its discovery "unequivocally" links PLA2 defects to neurodegeneration, researchers say, which is significant because similar lipid metabolism changes are seen in neurodegeneration associated with ischemia from stroke, spinal cord trauma, head injury and Alzheimer's disease, making this metabolic pathway a potential drug target.

In addition, iron is known to accumulate with age in brain regions attacked by Alzheimer's and Parkinson's diseases. "This is a common end effect of many neurodegenerative disorders," Hayflick said.

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>