Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare disease's gene may illuminate major disorders

20.06.2006
OHSU discovery of gene behind iron accumulation in brain has implications for Parkinson's, Alzheimer's

Oregon Health & Science University researchers have identified the gene behind a group of rare, progressive childhood disorders caused by an abnormal buildup of iron in the brain.

Discovery of the PLA2G6 gene, whose mutated forms trigger several genetic disorders categorized as neuroaxonal dystrophies, could shed light on the nerve cell degeneration that leads to such neurological maladies as Parkinson's and Alzheimer's diseases, both known to be associated with brain iron accumulation.

"If you're a family with a kid with one of these diseases, the impact is clear, specific and personal," said Susan J. Hayflick, M.D., professor of molecular and medical genetics, pediatrics and neurology in the OHSU School of Medicine. But because it may heighten understanding of other, better-known neurological disorders, "To the general population, (the discovery) has a larger impact, and that's a significant benefit."

In a study published online June 18 in the journal Nature Genetics, Hayflick and an international team of geneticists describe PLA2G6's discovery using DNA from families with infantile neuroaxonal dystrophy, or INAD, and a related disorder known as neurodegeneration with brain iron accumulation, or NBIA.

In INAD, also known as Seitelberger disease, symptoms start by age 2 and worsen over time, and include loss of head control and the ability to sit, crawl or walk, as well as deteriorating vision and speech, according to the National Institute of Neurological Disorders and Stroke, a branch of the National Institutes of Health. Children with the disease die between ages 5 and 10.

NBIA, sometimes called Hallervorden-Spatz syndrome, manifests itself between the teen years and adulthood. Symptoms include involuntary muscle contractions, rigidity and spasms in the limbs, face and torso, as well as confusion, disorientation, seizures, stupor and dementia. Rapid deterioration, punctuated by stable periods, lasts one to two months, with the rate of progression correlating with the patient's age – the later the onset, the better the patient fares. There is no cure nor standard treatment for either disease, which are inherited in a recessive fashion, meaning that both parents must contribute a defective gene to make both copies in the child defective. Incidence is 1 in 500,000 to 1 million.

PLA2G6's discovery means a clinical test can be developed to help families determine their chances of passing the disorders to their children.

"That's a direct outcome of this work," Hayflick said. "There are families who literally are waiting to have this test. They've been waiting for years. To have the option of bringing a child into this world you know won't have to suffer like this is extraordinary for a parent who's been through this. Some of them have had multiple children with the disease."

The disorders are caused by a build-up of iron in the basal ganglia, a cluster of gray-matter tissue structures deep in the brain that control motor function. The iron accumulation causes the branch-like axons that transmit electrical impulses from the nerve cell body to its terminal to swell, interrupting the signal sent to other nerve cells nearby.

PLA2G6 is thought to encode an enzyme that breaks down lipids involved in the reconstruction of a cell's membrane following damage by light and other toxins. When the gene is mutated, lipid metabolism is altered and iron builds up, triggering disease.

"I studied our entire INAD patient population for mutations in this gene and found over 44 different changes in the gene which would lead to disease," said study co-author Shawn Westaway, Ph.D., research assistant professor of molecular and medical genetics at OHSU. Working with scientists at the University of Birmingham School of Medicine, United Kingdom, Hayflick and Westaway collected DNA from 30 to 40 families affected by the diseases and narrowed the search for the suspect gene to a 100-gene block of DNA on chromosome 22, the second smallest chromosome in humans that contains 500 to 800 genes. The team then looked for genes in the region whose function was suggestive of the symptoms and parts of the body affected by the diseases, and the search was further narrowed to 75 genes.

"You just start sequencing genes and compare healthy people to people with the disease," Hayflick said. "In people with the disease, you see changes that are clearly disease causing."

After scouring the 75 genes, "we finally found mutations in PLA2G6 in a large kindred with multiple generations of affected individuals, and in three other smaller families," Westaway said.

The chromosomes containing the mutations are then compared to almost 200 control chromosomes not affected by the disease. "The severity of the mutation is usually a very good clue that the gene has been found," she said. "That evidence is confirmed by continuing to find different, but severe, mutations in the same gene in new patients diagnosed with INAD, which we have done."

PLA2G6 is among 18 lipid-metabolizing genes in a protein family known as phospholipase A2 (PLA2), and INAD is the first inherited disorder associated with mutations in one of these genes. Its discovery "unequivocally" links PLA2 defects to neurodegeneration, researchers say, which is significant because similar lipid metabolism changes are seen in neurodegeneration associated with ischemia from stroke, spinal cord trauma, head injury and Alzheimer's disease, making this metabolic pathway a potential drug target.

In addition, iron is known to accumulate with age in brain regions attacked by Alzheimer's and Parkinson's diseases. "This is a common end effect of many neurodegenerative disorders," Hayflick said.

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>