Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify roles of gene mutations causing lupus in mice

19.06.2006
In two related studies, researchers at UT Southwestern Medical Center have pinpointed defective genes in mice responsible for triggering the mysterious autoimmune disease lupus, which prompts the body's immune system to mistakenly attack healthy organs and tissues.

A research team led by Dr. Chandra Mohan, associate professor of internal medicine, found that a defect in the Ly108 gene causes immune cells called B-cells to attack the body's healthy cells, resulting in systemic lupus erythematosus, or SLE. Their findings are published in today's issue of the journal Science.

Further research based on the study's findings may lead to better diagnostic tests and therapeutic drugs to help cure human lupus, said Dr. Mohan, the paper's senior author.

"If we can demonstrate that the same gene defect we described in the mouse model also causes human lupus, it would open ways to block the disease by developing therapeutics targeting pathways activated by the mutated Ly108 gene," Dr. Mohan said.

Kirthi Raman Kumar, the paper's lead author and a graduate student in immunology, said, "This is the first demonstration of how immature B-cells from lupus-prone mice behave differently from lupus-resistant normal mice and how this difference can lead to autoimmunity."

In a separate lupus study published online this week in the Proceedings of the National Academy of Sciences, another team of UT Southwestern researchers describe the role of a mutated gene called Tlr7, which interacts with Ly108 in triggering the mechanisms leading to a deadly form of lupus in mice by causing another component of the immune system to malfunction.

The research team led by Dr. Edward Wakeland, professor of immunology and director of UT Southwestern's Center for Immunology, explained that mice that died of lupus carried twice the normal amount of copies of the mutated receptor gene Tlr7.

"If you put both genes together, you create fatal disease – the mouse dies of the mouse version of SLE," said Dr. Wakeland, who is also a contributing author to the Science paper.

The faulty gene mechanism described by Dr. Wakeland's lab occurs in the body's basic or innate immune system, which recognizes an initial infection and responds to very generic forms of single-stranded viral RNA.

In contrast, Dr. Mohan's group explained a key mechanism in the development of lupus occurring in the adaptive immune system, which consists of cells that constantly adapt themselves to better recognize invading organisms and produce antibodies to fight them.

Both studies could yield promising targets for the development of specific drugs to treat or prevent human lupus, Drs. Mohan and Wakeland said.

Many of the current medications for lupus are drugs that were developed to treat other diseases. Such lupus medications include corticosteroids, chemotherapy drugs and the malaria drug Plaquenil.

"The available treatments are non-specific and can often cause undesirable side effects," Dr. Mohan said.

Lupus is a chronic disease that can cause life-threatening damage to many parts of the body, including the kidneys, lungs, heart, central nervous system, joints, blood vessels and skin. It can be associated with severe fatigue, joint pain, skin rashes, hair loss and neurological problems.

Genetic predisposition, gender and race are major risk factors for lupus, which affects an estimated 270,000 to more than one million people in the United States. Women are five times more likely to die from lupus than men, and African-Americans are three times more like to die from lupus than Caucasians, according to the Alliance for Lupus Research. It is also more common in women of Hispanic, Asian and Native-American descent. Nine out of 10 people with lupus are women.

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>