Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify roles of gene mutations causing lupus in mice

19.06.2006
In two related studies, researchers at UT Southwestern Medical Center have pinpointed defective genes in mice responsible for triggering the mysterious autoimmune disease lupus, which prompts the body's immune system to mistakenly attack healthy organs and tissues.

A research team led by Dr. Chandra Mohan, associate professor of internal medicine, found that a defect in the Ly108 gene causes immune cells called B-cells to attack the body's healthy cells, resulting in systemic lupus erythematosus, or SLE. Their findings are published in today's issue of the journal Science.

Further research based on the study's findings may lead to better diagnostic tests and therapeutic drugs to help cure human lupus, said Dr. Mohan, the paper's senior author.

"If we can demonstrate that the same gene defect we described in the mouse model also causes human lupus, it would open ways to block the disease by developing therapeutics targeting pathways activated by the mutated Ly108 gene," Dr. Mohan said.

Kirthi Raman Kumar, the paper's lead author and a graduate student in immunology, said, "This is the first demonstration of how immature B-cells from lupus-prone mice behave differently from lupus-resistant normal mice and how this difference can lead to autoimmunity."

In a separate lupus study published online this week in the Proceedings of the National Academy of Sciences, another team of UT Southwestern researchers describe the role of a mutated gene called Tlr7, which interacts with Ly108 in triggering the mechanisms leading to a deadly form of lupus in mice by causing another component of the immune system to malfunction.

The research team led by Dr. Edward Wakeland, professor of immunology and director of UT Southwestern's Center for Immunology, explained that mice that died of lupus carried twice the normal amount of copies of the mutated receptor gene Tlr7.

"If you put both genes together, you create fatal disease – the mouse dies of the mouse version of SLE," said Dr. Wakeland, who is also a contributing author to the Science paper.

The faulty gene mechanism described by Dr. Wakeland's lab occurs in the body's basic or innate immune system, which recognizes an initial infection and responds to very generic forms of single-stranded viral RNA.

In contrast, Dr. Mohan's group explained a key mechanism in the development of lupus occurring in the adaptive immune system, which consists of cells that constantly adapt themselves to better recognize invading organisms and produce antibodies to fight them.

Both studies could yield promising targets for the development of specific drugs to treat or prevent human lupus, Drs. Mohan and Wakeland said.

Many of the current medications for lupus are drugs that were developed to treat other diseases. Such lupus medications include corticosteroids, chemotherapy drugs and the malaria drug Plaquenil.

"The available treatments are non-specific and can often cause undesirable side effects," Dr. Mohan said.

Lupus is a chronic disease that can cause life-threatening damage to many parts of the body, including the kidneys, lungs, heart, central nervous system, joints, blood vessels and skin. It can be associated with severe fatigue, joint pain, skin rashes, hair loss and neurological problems.

Genetic predisposition, gender and race are major risk factors for lupus, which affects an estimated 270,000 to more than one million people in the United States. Women are five times more likely to die from lupus than men, and African-Americans are three times more like to die from lupus than Caucasians, according to the Alliance for Lupus Research. It is also more common in women of Hispanic, Asian and Native-American descent. Nine out of 10 people with lupus are women.

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>