Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify roles of gene mutations causing lupus in mice

19.06.2006
In two related studies, researchers at UT Southwestern Medical Center have pinpointed defective genes in mice responsible for triggering the mysterious autoimmune disease lupus, which prompts the body's immune system to mistakenly attack healthy organs and tissues.

A research team led by Dr. Chandra Mohan, associate professor of internal medicine, found that a defect in the Ly108 gene causes immune cells called B-cells to attack the body's healthy cells, resulting in systemic lupus erythematosus, or SLE. Their findings are published in today's issue of the journal Science.

Further research based on the study's findings may lead to better diagnostic tests and therapeutic drugs to help cure human lupus, said Dr. Mohan, the paper's senior author.

"If we can demonstrate that the same gene defect we described in the mouse model also causes human lupus, it would open ways to block the disease by developing therapeutics targeting pathways activated by the mutated Ly108 gene," Dr. Mohan said.

Kirthi Raman Kumar, the paper's lead author and a graduate student in immunology, said, "This is the first demonstration of how immature B-cells from lupus-prone mice behave differently from lupus-resistant normal mice and how this difference can lead to autoimmunity."

In a separate lupus study published online this week in the Proceedings of the National Academy of Sciences, another team of UT Southwestern researchers describe the role of a mutated gene called Tlr7, which interacts with Ly108 in triggering the mechanisms leading to a deadly form of lupus in mice by causing another component of the immune system to malfunction.

The research team led by Dr. Edward Wakeland, professor of immunology and director of UT Southwestern's Center for Immunology, explained that mice that died of lupus carried twice the normal amount of copies of the mutated receptor gene Tlr7.

"If you put both genes together, you create fatal disease – the mouse dies of the mouse version of SLE," said Dr. Wakeland, who is also a contributing author to the Science paper.

The faulty gene mechanism described by Dr. Wakeland's lab occurs in the body's basic or innate immune system, which recognizes an initial infection and responds to very generic forms of single-stranded viral RNA.

In contrast, Dr. Mohan's group explained a key mechanism in the development of lupus occurring in the adaptive immune system, which consists of cells that constantly adapt themselves to better recognize invading organisms and produce antibodies to fight them.

Both studies could yield promising targets for the development of specific drugs to treat or prevent human lupus, Drs. Mohan and Wakeland said.

Many of the current medications for lupus are drugs that were developed to treat other diseases. Such lupus medications include corticosteroids, chemotherapy drugs and the malaria drug Plaquenil.

"The available treatments are non-specific and can often cause undesirable side effects," Dr. Mohan said.

Lupus is a chronic disease that can cause life-threatening damage to many parts of the body, including the kidneys, lungs, heart, central nervous system, joints, blood vessels and skin. It can be associated with severe fatigue, joint pain, skin rashes, hair loss and neurological problems.

Genetic predisposition, gender and race are major risk factors for lupus, which affects an estimated 270,000 to more than one million people in the United States. Women are five times more likely to die from lupus than men, and African-Americans are three times more like to die from lupus than Caucasians, according to the Alliance for Lupus Research. It is also more common in women of Hispanic, Asian and Native-American descent. Nine out of 10 people with lupus are women.

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht If solubilty is the problem - Mechanochemistry is the solution
25.05.2018 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

If solubilty is the problem - Mechanochemistry is the solution

25.05.2018 | Life Sciences

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018 | Interdisciplinary Research

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>