Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new kind of mutation could explain numerous phenotypic variations in various species

06.06.2006
The authors describe the discovery of a novel class of mutations that disrupt the function of a gene and thereby cause a specific phenotype. The mutation created the appearance of an "illegitimate" microRNA (miRNA) recognition site in a gene that did not have it in its normal form.

In this study, the gene concerned is the myostatin. This gene is expressed in the skeletal muscle and the function of the derived protein is to inhibit muscular growth. The mutation discovered among sheep exposed a recognition site for two miRNAs that are highly expressed in the muscle. In "mutant" animals, these miRNAs will consequently target the myostatin gene and block its translation. The result is that the absence of myostatin provokes a muscular hypertrophy among Texel sheep.

A mechanism observed in other species as well

However, Michel Georges’ team investigated further. Pursuing the study using bioinformatic approaches, the team identified polymorphisms (common mutations) among humans and mice that are likely to act in the same way as they do in the Texel breed. It appears, therefore, that this new kind of mutation, discovered while studying sheep, could contribute significantly to the phenotypic variation observed in many species – among which humans – including the hereditary predisposition to various diseases.

Researchers at ULg have thus produced a database available online that compiles all these mutations (the Patrocles database: http://www.patrocles.org). It will assist researchers around the world in discovering similar phenomena for other phenotypes including hereditary diseases.

Prof. Michel Georges | EurekAlert!
Further information:
http://www.ulg.ac.be

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>