Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new kind of mutation could explain numerous phenotypic variations in various species

06.06.2006
The authors describe the discovery of a novel class of mutations that disrupt the function of a gene and thereby cause a specific phenotype. The mutation created the appearance of an "illegitimate" microRNA (miRNA) recognition site in a gene that did not have it in its normal form.

In this study, the gene concerned is the myostatin. This gene is expressed in the skeletal muscle and the function of the derived protein is to inhibit muscular growth. The mutation discovered among sheep exposed a recognition site for two miRNAs that are highly expressed in the muscle. In "mutant" animals, these miRNAs will consequently target the myostatin gene and block its translation. The result is that the absence of myostatin provokes a muscular hypertrophy among Texel sheep.

A mechanism observed in other species as well

However, Michel Georges’ team investigated further. Pursuing the study using bioinformatic approaches, the team identified polymorphisms (common mutations) among humans and mice that are likely to act in the same way as they do in the Texel breed. It appears, therefore, that this new kind of mutation, discovered while studying sheep, could contribute significantly to the phenotypic variation observed in many species – among which humans – including the hereditary predisposition to various diseases.

Researchers at ULg have thus produced a database available online that compiles all these mutations (the Patrocles database: http://www.patrocles.org). It will assist researchers around the world in discovering similar phenomena for other phenotypes including hereditary diseases.

Prof. Michel Georges | EurekAlert!
Further information:
http://www.ulg.ac.be

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>