Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mice lacking key immune component still control chronic viral infections

Despite lack of a key component of the immune system, a line of genetically engineered mice can control chronic herpes virus infections, researchers at Washington University School of Medicine in St. Louis have found.

Scientists can’t prove it yet, but they suspect the missing immune system component, a group of molecules known as the Major Histocompatibility Complex (MHC) Class Ia, has a previously unrecognized backup that is similar enough to step in and fill the void left by its absence. If so, that backup may become a new focus for efforts to design antiviral vaccines.

"This surprising finding contradicts a long-held belief about control of viral infection: that the immune system must have MHC Class I molecules to recognize and destroy virus-infected cells," says senior author Skip Virgin, M.D., Ph.D., professor of pathology and immunology and of molecular microbiology. "It also suggests that we may need to take a more extensive look at what immune system elements play a role in controlling chronic viral infections."

The study will be published in the May issue of Public Library of Science Pathogens.

In chronic herpes virus infections, the body brings the invader under control, reducing its replication and spread, but is unable to completely eliminate it, resulting in lifelong infection.

The mice in the study were injected with murine gamma herpes virus 68, a herpes virus that infects mice and is closely related to the human gamma herpes viruses Epstein-Barr virus (EBV, the cause of mononucleosis) and Kaposi’s sarcoma-associated herpes virus (KSHV, the cause of a form of cancer known as Kaposi’s sarcoma). Other herpes viruses that infect humans include the alpha herpes viruses herpes simplex virus 1 and 2, which cause cold sores and genital herpes, and varicella zoster virus, which causes chickenpox. Infection with gamma herpes viruses such as EBV and KSHV increases the risk of some cancers, especially in persons with weakened immune systems.

Immune system cells known as CD8 or cytotoxic T cells are responsible for recognizing virus-infected cells and killing them or sounding alarms that summon other defensive measures. To enable this recognition process, other cells regularly chop up viral proteins found in their interiors and display them on their surfaces. MHC Class I molecules act as a kind of stage for this inspection process, binding to the protein parts as they are sent to the surface and allowing CD8 T cells to recognize the presence of a foreign invader. When the CD8 T cells recognize a viral protein part, they either destroy the cell displaying the part or emit inflammatory hormones known as cytokines that trigger other immune defense measures.

Because the genetically modified mice used in their experiment lacked the genes that contain instructions for making MHC Class I molecules, Virgin and his colleagues expected to see little response from CD8 T cells when they injected the mice with herpes virus. Initially, that was exactly what they found.

"This was a study of chronic infection, though, and when we looked at the mice seven weeks later, we were surprised to find the mice making a very robust and effective CD8 T cell response," he says. "This suggests there’s an alternate way of generating CD8 T cells."

The researchers believe a closely related stand-in for MHC Class I makes it possible for mouse CD8 T cells to recognize and fight the virus.

"It would be reasonable for there to be backup plans, particularly given that some viruses have evasion strategies that they use to block the classical antigen recognition processes that rely on MHC Class I," Virgin says.

Follow-up studies now underway have produced preliminary evidence that these backup plans may be active even when normal MHC Class I is engaged in the fight against chronic infection. Additional studies will look at whether the backup system can enable an active immune response to other chronic infectious agents.

Some current efforts to develop antiviral vaccines focus exclusively on portions of viral proteins likely to be picked up and presented by MHC Class I molecules. If these backup mechanisms are important to control of herpes and other chronic diseases, they may pick up and display other parts of viral proteins for CD8 T cells to recognize. If so, vaccine developers may need to revise their approach in order to create vaccines that trigger the most potent antiviral immune responses.

"The ultimate relevance of these backup systems to human disease isn’t known yet, but it’s worth noting that we never would have even known to look for them if it weren’t for our ability to study genetically altered mice," he says.

Michael Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>