Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice lacking key immune component still control chronic viral infections

30.05.2006
Despite lack of a key component of the immune system, a line of genetically engineered mice can control chronic herpes virus infections, researchers at Washington University School of Medicine in St. Louis have found.

Scientists can’t prove it yet, but they suspect the missing immune system component, a group of molecules known as the Major Histocompatibility Complex (MHC) Class Ia, has a previously unrecognized backup that is similar enough to step in and fill the void left by its absence. If so, that backup may become a new focus for efforts to design antiviral vaccines.

"This surprising finding contradicts a long-held belief about control of viral infection: that the immune system must have MHC Class I molecules to recognize and destroy virus-infected cells," says senior author Skip Virgin, M.D., Ph.D., professor of pathology and immunology and of molecular microbiology. "It also suggests that we may need to take a more extensive look at what immune system elements play a role in controlling chronic viral infections."

The study will be published in the May issue of Public Library of Science Pathogens.

In chronic herpes virus infections, the body brings the invader under control, reducing its replication and spread, but is unable to completely eliminate it, resulting in lifelong infection.

The mice in the study were injected with murine gamma herpes virus 68, a herpes virus that infects mice and is closely related to the human gamma herpes viruses Epstein-Barr virus (EBV, the cause of mononucleosis) and Kaposi’s sarcoma-associated herpes virus (KSHV, the cause of a form of cancer known as Kaposi’s sarcoma). Other herpes viruses that infect humans include the alpha herpes viruses herpes simplex virus 1 and 2, which cause cold sores and genital herpes, and varicella zoster virus, which causes chickenpox. Infection with gamma herpes viruses such as EBV and KSHV increases the risk of some cancers, especially in persons with weakened immune systems.

Immune system cells known as CD8 or cytotoxic T cells are responsible for recognizing virus-infected cells and killing them or sounding alarms that summon other defensive measures. To enable this recognition process, other cells regularly chop up viral proteins found in their interiors and display them on their surfaces. MHC Class I molecules act as a kind of stage for this inspection process, binding to the protein parts as they are sent to the surface and allowing CD8 T cells to recognize the presence of a foreign invader. When the CD8 T cells recognize a viral protein part, they either destroy the cell displaying the part or emit inflammatory hormones known as cytokines that trigger other immune defense measures.

Because the genetically modified mice used in their experiment lacked the genes that contain instructions for making MHC Class I molecules, Virgin and his colleagues expected to see little response from CD8 T cells when they injected the mice with herpes virus. Initially, that was exactly what they found.

"This was a study of chronic infection, though, and when we looked at the mice seven weeks later, we were surprised to find the mice making a very robust and effective CD8 T cell response," he says. "This suggests there’s an alternate way of generating CD8 T cells."

The researchers believe a closely related stand-in for MHC Class I makes it possible for mouse CD8 T cells to recognize and fight the virus.

"It would be reasonable for there to be backup plans, particularly given that some viruses have evasion strategies that they use to block the classical antigen recognition processes that rely on MHC Class I," Virgin says.

Follow-up studies now underway have produced preliminary evidence that these backup plans may be active even when normal MHC Class I is engaged in the fight against chronic infection. Additional studies will look at whether the backup system can enable an active immune response to other chronic infectious agents.

Some current efforts to develop antiviral vaccines focus exclusively on portions of viral proteins likely to be picked up and presented by MHC Class I molecules. If these backup mechanisms are important to control of herpes and other chronic diseases, they may pick up and display other parts of viral proteins for CD8 T cells to recognize. If so, vaccine developers may need to revise their approach in order to create vaccines that trigger the most potent antiviral immune responses.

"The ultimate relevance of these backup systems to human disease isn’t known yet, but it’s worth noting that we never would have even known to look for them if it weren’t for our ability to study genetically altered mice," he says.

Michael Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>