Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene expression becomes heterogeneous with age in humans and rats

In a study of the effects of aging on gene expression, researchers have found that variation in gene expression among individuals tends to increase with age. The findings, which impact our understanding of the molecular forces that govern age-related changes, are reported in the May 23rd issue of Current Biology by Mehmet Somel and colleagues at the Max Planck Institute for Evolutionary Anthropology and the University of Cambridge.

One long-standing observation concerning the physiological decline that accompanies aging is its variability--some people age better than others. However, there has thus far been little or no evidence supporting the existence of similar heterogeneity at the level of gene expression. Lack of such evidence, in turn, gives support to a "programmed aging" hypothesis and argues against the more commonly accepted "stochastic aging" model, in which random biological events play an important role.

In the new work, researchers put to the test the question of whether gene-expression heterogeneity increases with age. Using a wide range of expression data from both humans and rats, the researchers showed that levels of gene expression become more variable with age. Furthermore, they found that the tendency toward increased variation is not restricted to a specific set of genes, implying that increased heterogeneity is the outcome of random processes such as genetic mutation.

These observations corroborate the notion that aging is underpinned by stochastic events. That said, the authors of the study point out that the observed increases in expression variation are surprisingly small, leaving plenty of room for further explanations regarding the relationship between aging-related changes at the organismal level and the underlying molecular mechanisms of aging. Nevertheless, the new results show that with the increasing amounts of molecular data available to researchers, scientists will now experience improved opportunities to answer age-old questions about the nature of aging.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>