Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How healthy is that marsh? Biologists count parasites

22.05.2006
Is that salt marsh healthy? To answer this, Sea Grant biologists are cracking open common marsh snails and counting parasitic worms. Their claim: the more parasites, the healthier the marsh.

While the parasite hypothesis may conflict with conventional ideas about infectious disease and human health (malaria, for example, is caused by a parasite), the worms the scientists are investigating are not just any kind of parasite.

For one, these worms, known as trematodes, must sequentially infect certain hosts to complete their lifecycle. Snails to crabs to birds might be a typical sequence for one species, snails to fish to birds for another. These trematodes also stand apart from other parasites in that they cause negligible disease for their highest trophic level hosts, usually birds. The worms’ lifecycle thus typically begins in a snail and ends in a bird, with the intermediate host animals being primary variables among worm species.

Intrigued by the prospects of developing a new tool for monitoring changes in wetland ecology, NOAA’s California Sea Grant recently awarded support to parasite mavens Armand Kuris of the Department of Ecology, Evolution and Marine Biology at the University of California, Santa Barbara, and Kevin Lafferty of the Biological Resources Discipline at the U.S. Geological Survey to collect California horn snails from 30 coastal salt marshes between Marin County and Imperial Beach at the U.S.-Mexico border.

"The horn snail is a mobile data recorder," Lafferty said. "It is a hub for more than 20 trematode species." If any one requisite intermediate host is missing, the parasite cannot reproduce and hence will be underrepresented in the resident snail population, he explained.

A survey of the trematode population in resident snails thus becomes a clever means of reconstructing the food web in the area, as the trematodes reflect the predator-prey relationships that must be occurring to support their reproductive lifecycle.

"Trematodes require all of the pieces of the puzzle to complete their lifecycle," Lafferty said. "When we see a lot of parasites in an estuary, we know it is in good shape. For example, an estuary with high infection rates tells you that it is visited by many birds, and many types of birds."

The goal of the Sea Grant project is to establish a baseline snail-trematode count in marshes, particularly those slated for restoration. By comparing worm statistics before and after a restoration project, which could include activities such as digging channels or removing non-native plants, the biologists believe that wetlands managers will have a tool for gauging restoration success and its gaps.

If, for example, a certain trematode species is missing, it could indicate that its hosts are lacking appropriate habitats. "The trematode information provides a novel way to see what we need to alter to improve habitats," Kuris said.

The feasibility of the snail-as-data-logger idea was established at a case-study site at the Carpinteria salt marsh in Santa Barbara. There, the biologists showed the trematode community did indeed become measurably more vibrant after restoration, due to an increase in the number of birds foraging on infected fish and benthic invertebrates.

To further validate the method, UCSB graduate student Ryan Hechinger conducted four month-long bird surveys at the study site, using video cameras to capture images of as many birds as possible. The results proved encouraging as the video-based estimates of the bird community were in close agreement with those from the snail-trematode analysis. "The more birds there were at a site, the more parasites," Hechinger said. "The more kinds of birds, the more kinds of trematodes, just as we predicted."

Hechinger hopes to produce a manual for resources managers that will explain how to collect snails, identify the trematodes inside them, and then translate this information into information on resident populations of birds, fishes and benthic invertebrates.

"We think counting trematodes is an effective tool for assessing the biodiversity of salt marshes in California," Lafferty said. "We are interested in developing similar techniques for other ecosystems, such as coral reefs and kelp forests."

Wetlands being surveyed as part of the California Sea Grant project:

Wetland, County
Tomales Bay, Marin
Drake’s Estero, Marin
Bolinas Lagoon, Marin
Hayward, Alameda
SE San Fran Bay 92, Alameda
Coyote Hills Slough, Alameda
Newark-Mowry Slough, Alameda
South San Fran Bay, Alameda/Santa Clara
Baylands Region, Santa Clara/San Mateo
Redwood Region, San Mateo
W 92 San Mateo,
Morro Bay, San Luis Obispo
Goleta Slough, Santa Barbara
Carpinteria Salt Marsh, Santa Barbara
Mugu Lagoon, Ventura
Ballona Region, Los Angeles
Cabrillo, Los Angeles
Los Angeles River, Los Angeles
Colorado Lagoon, Los Angeles
Cerritos Wetlands, Los Angeles
Anaheim Bay, Orange
Huntington Beach, Orange
Santa Ana River, Orange
Santa Margarita, San Diego
Agua Hedionda, San Diego
Batiquitos, San Diego
San Elijo, San Diego
San Dieguito, San Diego
Los Peñasquitos, San Diego
Mission Bay, San Diego
San Diego River, San Diego
Famosa Slough, San Diego
San Diego Bay, San Diego
Tijuana Estuary, San Diego

Christina S. Johnson | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>