Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How healthy is that marsh? Biologists count parasites

22.05.2006
Is that salt marsh healthy? To answer this, Sea Grant biologists are cracking open common marsh snails and counting parasitic worms. Their claim: the more parasites, the healthier the marsh.

While the parasite hypothesis may conflict with conventional ideas about infectious disease and human health (malaria, for example, is caused by a parasite), the worms the scientists are investigating are not just any kind of parasite.

For one, these worms, known as trematodes, must sequentially infect certain hosts to complete their lifecycle. Snails to crabs to birds might be a typical sequence for one species, snails to fish to birds for another. These trematodes also stand apart from other parasites in that they cause negligible disease for their highest trophic level hosts, usually birds. The worms’ lifecycle thus typically begins in a snail and ends in a bird, with the intermediate host animals being primary variables among worm species.

Intrigued by the prospects of developing a new tool for monitoring changes in wetland ecology, NOAA’s California Sea Grant recently awarded support to parasite mavens Armand Kuris of the Department of Ecology, Evolution and Marine Biology at the University of California, Santa Barbara, and Kevin Lafferty of the Biological Resources Discipline at the U.S. Geological Survey to collect California horn snails from 30 coastal salt marshes between Marin County and Imperial Beach at the U.S.-Mexico border.

"The horn snail is a mobile data recorder," Lafferty said. "It is a hub for more than 20 trematode species." If any one requisite intermediate host is missing, the parasite cannot reproduce and hence will be underrepresented in the resident snail population, he explained.

A survey of the trematode population in resident snails thus becomes a clever means of reconstructing the food web in the area, as the trematodes reflect the predator-prey relationships that must be occurring to support their reproductive lifecycle.

"Trematodes require all of the pieces of the puzzle to complete their lifecycle," Lafferty said. "When we see a lot of parasites in an estuary, we know it is in good shape. For example, an estuary with high infection rates tells you that it is visited by many birds, and many types of birds."

The goal of the Sea Grant project is to establish a baseline snail-trematode count in marshes, particularly those slated for restoration. By comparing worm statistics before and after a restoration project, which could include activities such as digging channels or removing non-native plants, the biologists believe that wetlands managers will have a tool for gauging restoration success and its gaps.

If, for example, a certain trematode species is missing, it could indicate that its hosts are lacking appropriate habitats. "The trematode information provides a novel way to see what we need to alter to improve habitats," Kuris said.

The feasibility of the snail-as-data-logger idea was established at a case-study site at the Carpinteria salt marsh in Santa Barbara. There, the biologists showed the trematode community did indeed become measurably more vibrant after restoration, due to an increase in the number of birds foraging on infected fish and benthic invertebrates.

To further validate the method, UCSB graduate student Ryan Hechinger conducted four month-long bird surveys at the study site, using video cameras to capture images of as many birds as possible. The results proved encouraging as the video-based estimates of the bird community were in close agreement with those from the snail-trematode analysis. "The more birds there were at a site, the more parasites," Hechinger said. "The more kinds of birds, the more kinds of trematodes, just as we predicted."

Hechinger hopes to produce a manual for resources managers that will explain how to collect snails, identify the trematodes inside them, and then translate this information into information on resident populations of birds, fishes and benthic invertebrates.

"We think counting trematodes is an effective tool for assessing the biodiversity of salt marshes in California," Lafferty said. "We are interested in developing similar techniques for other ecosystems, such as coral reefs and kelp forests."

Wetlands being surveyed as part of the California Sea Grant project:

Wetland, County
Tomales Bay, Marin
Drake’s Estero, Marin
Bolinas Lagoon, Marin
Hayward, Alameda
SE San Fran Bay 92, Alameda
Coyote Hills Slough, Alameda
Newark-Mowry Slough, Alameda
South San Fran Bay, Alameda/Santa Clara
Baylands Region, Santa Clara/San Mateo
Redwood Region, San Mateo
W 92 San Mateo,
Morro Bay, San Luis Obispo
Goleta Slough, Santa Barbara
Carpinteria Salt Marsh, Santa Barbara
Mugu Lagoon, Ventura
Ballona Region, Los Angeles
Cabrillo, Los Angeles
Los Angeles River, Los Angeles
Colorado Lagoon, Los Angeles
Cerritos Wetlands, Los Angeles
Anaheim Bay, Orange
Huntington Beach, Orange
Santa Ana River, Orange
Santa Margarita, San Diego
Agua Hedionda, San Diego
Batiquitos, San Diego
San Elijo, San Diego
San Dieguito, San Diego
Los Peñasquitos, San Diego
Mission Bay, San Diego
San Diego River, San Diego
Famosa Slough, San Diego
San Diego Bay, San Diego
Tijuana Estuary, San Diego

Christina S. Johnson | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>