Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural stem cell gene plays crucial role in eye development

17.05.2006
Scientists at the University of North Carolina at Chapel Hill have demonstrated that normal development of the eye requires the right amount of a neural stem cell gene be expressed at the right time and place.

Neural stem cells are cells that can differentiate into different cell types in the nervous system. In the developing eye, retinal neural stem cells differentiate to form the neurons of the adult eye and form the optic nerve.

Led by Dr. Larysa H. Pevny, an assistant professor of genetics in the UNC School of Medicine, researchers discovered that expression levels of a particular neural stem cell gene, SOX2, are a critical factor that regulates the differentiation of neural stem/progenitor cells in the eye.

Their work appears in the current edition of the journal Genes & Development.

The SOX2 gene is a member of class of master genes that encode for transcription factors. Transcription factors are proteins that bind to DNA and regulate the expression of other genes

The investigators discovered that, in mice, disruption of the SOX2 gene in neural retinal stem cells leads to a kind of abnormal development of the eye called microphtalmia, or small eye. Approximately 10 percent of all human cases of microphtalmia result from mutations in the SOX2 gene.

Moreover, this study indicates that the degree to which SOX2 gene is disrupted dictates the severity of this condition.

"We found that even a reduction in normal SOX2 levels causes problems in these mice and this mimics the problems seen in humans," said Pevny.

The scientist pointed out that the problem in eye development in these mice results from loss of SOX2 mediated maintenance of the neural progenitor cell population in the eye.

According to Pevny, the study demonstrates that normal development of the eye is contingent upon having the right amount of SOX2, expressed at the right time and place. "Too little SOX2 expression results in the neural stem cell pool to aberrantly differentiate into neurons during development," Pevny said. "This disrupts the normal maintenance of the stem cell pool in the eye and disrupts the whole developmental process."

A complete loss of SOX2 expression in neural retinal progenitor cells results in the loss of the ability to either differentiate into neurons, or stay in the pluripotent state. In the pluripotent state, the cells are constantly replenished, but each cell retains the ability to differentiate into different cell types. This loss results in a block in eye formation in mice.

The manuscript also describes that one of the genes that SOX2 controls is Notch1, and loss of regulation of this gene is what is partially responsible for abnormal development of the eye. Notch1 is expressed in several other stem cell/progenitor populations. Therefore, SOX2 may play an important role in maintaining these populations as well.

In addition to highlighting a role for SOX2 in normal eye development, Pevny also stressed that this study illustrates the power of mouse genetics. "Right now, we are only in the hypothetical stage of therapeutic application of this work, but we finally have the genetic tools to actually test our hypothesis."

Other authors that contributed to the study are members of the UNC Neuroscience Center and department of genetics: Dr. Olena Taranova, a former UNC graduate student in neurobiology, now a postdoctoral scientist in the UNC Lineberger Comprehensive Cancer Center; Dr. Scott T. Magness, a postdoctoral scientist; B. Matthew Fagan, research technician; Dr.Yongquin Wu, director of the In Situ Hybridization Core Facility at the UNC Neuroscience Center; and Scott R. Hutton and Natalie Surzenko, graduate research assistants in the UNC Neurobiology Curriculum.

This work is supported by grants from the National Institutes of Health and the Christopher Reeves Paralysis Foundation

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>