Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive Duplication of Genes May Solve Darwin’s "Abominable Mystery" about Flowering Plants

12.05.2006
Researchers from the Floral Genome Project at Penn State University, with an international team of collaborators, have proposed an answer to Charles Darwin’s "abominable mystery:" the inexplicably rapid evolution of flowering plants immediately after their first appearance some 140 million years ago.

By developing new statistical methods to analyze incomplete DNA sequences from thirteen strategically selected plant species, the researchers uncovered a previously hidden "paleopolyploidy" event, an ancient whole-genome duplication that preceded the appearance of the ancestral flowering plant.


Photographs by Yi Hu, Penn State Eberly College of Science Department of Biology
The yellow water lily (Nuphar advena) shows evidence of an ancient genome duplication that may have been a key event in the evolution of flowering plants.

Claude dePamphilis, associate professor of biology at Penn State, is the principal investigator of the Floral Genome Project and the senior author of the paper. "We found a concentration of duplicated genes that suggests a whole-genome duplication event in the earliest flowering plants," he says. "A polyploidy event early in the history of flowering plants could explain their sudden evolution." The results appear in a June issue of Genome Research.

One unexpected observation from the study is the relatively slow accumulation of mutations in primitive flowering plants like the yellow water lily (Nuphar). "We can view these basal angiosperms like the Hubble Space Telescope, which helps us get a deeper look into the early history of the universe--these plants allow us to take a deeper look into genomic history."

Darwin noticed that flowering plants appear suddenly in the fossil record and then radiate quite rapidly. Technically known as angiosperms, "flowering plants exhibit a number of evolutionary innovations that appeared rapidly, including novel structures like carpels and primitive petals and sepals, the sine qua non of flowering plants," dePamphilis says. Angiosperms also boast plenty of unique biochemistry. "They’re a rich source of medicinal compounds. Even the kind of wood they make is special."

The new results support the idea that "whole-genome duplications are rare in vertebrates, but common in plants," according to dePamphilis. Independent whole-genome duplications occurred relatively recently in soy, potato, and tobacco, and longer ago in maize. But the thinking was that human breeders might be artificially selecting for duplication events in crop species by "selecting desirable traits like rapid growth, high yield, and even large stature," says dePamphilis.

Detection of still more ancient whole-genome duplications previously has relied on direct observation of genomes that have been completely sequenced. Arabidopsis, for example, the first plant whose genome was entirely sequenced, was shown to harbor many small blocks of related genes in identical order along the chromosome--the telltale remnants of a whole-genome duplication. In Arabidopsis and other cases, however, the signs of whole-genome duplication are few and far between: most of the duplicate genes are quickly lost, leaving few obvious traces.

Whole-genome duplications have attracted attention as a possible mechanism to drive sudden bursts of evolution, like the one that so vexed Darwin over a century ago. While the vast majority of duplicate genes quickly accumulate mutations and are deleted from the genome, a few mutations will be selected for evolutionarily advantageous function. Rather than gradually collecting genetic novelty by single-gene duplications, simultaneously having a full genome’s worth of raw material to elaborate new genetic function could drive sudden evolution. But because of the rapid, massive gene loss after a whole-genome duplication, these events are notoriously difficult to detect after millions of years. So dePamphilis and colleagues relied on a statistical filter to hunt for ancient duplications.

In order to show that such an event occurred early in angiosperm history, dePamphilis and his colleagues had to compare the genomes of "basal" angiosperms--those whose ancestors diverged from the rest early in the lineage--with more recently derived angiosperm species, as well as with plant species outside the angiosperms. They took the opportunity to examine the genomes of a number of plant species for which only a partial DNA sequence has been determined. The team uncovered evidence of whole-genome duplications by confining their study to duplicated genes. The challenge was to distinguish isolated duplications from whole-genome duplications after a period of time in which direct evidence for a genome-wide duplication may have disappeared.

Any duplicated gene gives rise to two "paralogs," which are each subject to random, independent mutation. Most mutations in a gene’s DNA sequence cause a change in the corresponding gene product. But "synonymous" mutations in DNA do not lead to a change in gene product, so natural selection has little effect on them and they remain in the genome. Because such mutations accumulate through time, the frequency of synonymous mutations between paralogs "can be used as a proxy for the time following the duplication," explains dePamphilis. Even after obvious signs of a whole-genome duplication have been lost, statistical analysis can detect a group of paralogs with very similar frequencies of synonymous mutations, indicating that all of those paralogs arose simultaneously--the hallmark of a whole-genome duplication.

A paleopolyploidy event previously demonstrated by other investigators is associated with a burst of evolution in the economically important grass family. The new results from the Penn State paper confirm a previously-reported paleopolyploidy event in eudicots (a group that includes beans, tomatoes, sunflowers, roses, and apples) associated with their rapid divergence, and demonstrates the first evidence of a paleopolyploidy event associated with the ancient explosion of all angiosperms.

Mere guilt by association? "We can take it farther than just correlation," asserts dePamphilis. The MADS-box genes, a family of transcription factors that are required for flower development, are known to have undergone an expansion through duplication that was critical to the evolution of angiosperm flowers. A whole-genome duplication explains the sudden emergence of novel traits better than a series of single-gene duplications, explains dePamphilis. "Some of the MADS-box genes and many other genes important in plant development were produced by paleopolyploidy."

In addition to de Pamphilis, coauthors at Penn State include the lead author Liyiung Cui and Kerr Wall, who developed the software for the statistical analysis along with Bruce Lindsay, Distinguished Professor and head of the Department of Statistics. Additional coauthors who contributed to the paper are at the University of Oslo, the Benaroya Research Institute in Seattle, Cornell University, and the University of Florida in Gainesville. The research was sponsored by the National Science Foundation.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>