Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World’s tiniest test tubes get teensiest corks

Now all they need is a really, really small corkscrew.

Like Lilliputian chemists, scientists have found a way to “cork” infinitesimally small nano test tubes. The goal is a better way to deliver drugs, for example, for cancer treatment. Scientists want to fill the teeny tubes with drugs and inject them into the body, where they will seek diseased or cancerous cells, uncork and spill their therapeutic contents in the right place.

“After making the nano test tubes, we saw the potential for them to be used for drug delivery vehicles, but because they are open at one end it would be like trying to ship wine in a bottle without a cork,” said University of Florida chemistry professor Charles Martin. “You have to cork it, which is what we have accomplished.”

Martin is one of six University of Florida chemistry faculty members and graduate students who co-authored a paper about the research that appeared last month in the Journal of the American Chemical Society.

While chemotherapy works against many cancers, it can cause severe side effects such as nausea, temporary hair loss and blood disease. To make the chemo hit only the cancerous cells, Martin and scientists elsewhere have spent recent years experimenting with drug-carrying nanotubes or nanoparticles.

“Nano” stems from nanotechnology, the fast-growing science of making objects or devices that approach molecular dimensions. One nanometer equals one-billionth of a meter.

The approach makes sense for attacking diseased cells while bypassing healthy ones, but it also poses challenges. For one thing, the nanotubes must recognize their target, a problem scientists are attacking by tweaking their chemistry to make it respond to the unique chemistry of cancer cells. The tubes also must be biologically benign. Martin says a method for making nanotubes he pioneered, template synthesis, allows manufacturers to use biodegradable material, such as the polylactides that compose biodegradable sutures.

Additionally, the tubes also had to be closed at one end to form the classic test tube shape, a problem Martin and his group solved in research published in 2004.

To “cork” the test tubes in the latest research, the researchers applied an amino chemical group to the mouth of the tubes and an aldehyde chemical group to the corks. The two groups are complementary, so they bond with one another.

Billions of nanotubes could fit on a postage stamp. So, said Martin, “we don’t put individual caps in each nanotube the way corking machines do for bottles.”

Instead, the scientists immerse a small mesh that holds millions of amino-modified nanotubes, all precisely lined up in a grid pattern, into a solution imbued with millions of the corks. Brownian motion — what happens when minute particles immersed in a fluid move about randomly — takes care of the rest. The corks simply float around, then slip into the mouths of the tubes as they encounter them.

The diameter of the tubes is about 80 nanometers, or 80-billionths of a meter. Even though they are tiny, each tube can hold about 5 million drug molecules. “Each tube packs a real punch in terms of the number of drug molecules it can deliver,” Martin said.

Sang Bok Lee, an assistant professor of chemistry and biochemistry at the University of Maryland, works on similar research. He said scientists have proposed capping the tubes using chemical interactions between the drugs and the tubes. But that might not work because the tube could leak before it reaches its target.

“I strongly agree that Professor Martin’s proposed strategy will be one of the ideal solutions for the problem of controlling drug uptake and release,” he said in an e-mail.

The UF scientists aren’t there yet. There’s no easy way to unlock the amino chemical group from the aldehyde chemical group. So while Martin says there are some promising possibilities, he and his colleagues have their next job cut out for them: figuring out how to uncork the tubes.

Charles Martin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>